Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
tutorials
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
2
Issues
2
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Data Science Dojo
tutorials
Commits
c97d2992
Commit
c97d2992
authored
May 04, 2022
by
Sanghoon
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
ff61d903
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
108 additions
and
0 deletions
+108
-0
VotingModel_code.R
...ve Bayes Classification/Voting Example/VotingModel_code.R
+108
-0
No files found.
Crash Course on Naive Bayes Classification/Voting Example/VotingModel_code.R
0 → 100644
View file @
c97d2992
# Problem : Can these models be used to predict how lawmakers may vote?
#Prepare a clean R environment in work space.
rm
(
list
=
ls
())
#Use setwd() to navigate the data directory and specify desired folder. Here we are using Rstudio Editor directory.
setwd
(
dirname
(
rstudioapi
::
getSourceEditorContext
()
$
path
))
#Import our csv file data
data
=
read.csv
(
"VotingData.csv"
,
header
=
TRUE
)
#Load data
TrainingPct
=
0.6
#Percent of data to train model on
TrainingSample
=
floor
(
TrainingPct
*
dim
(
data
)[
1
])
#Number of observations to train the model on
TestSample
=
dim
(
data
)[
1
]
-
TrainingSample
#Number of observations to test the model on
TrainingData
=
data
[
1
:
TrainingSample
,]
#Get the training data
#Find probabilities associtaed with democrat voting
DemData
=
subset
(
TrainingData
,
TrainingData
$
Party
==
"democrat"
)
#Store All Probabilities in a Matrix (2 rows, across all votes)
ProbMat
=
matrix
(
0
,
2
,(
dim
(
DemData
)[
2
]
-3+1+1
))
m
=
2
#Equivalent sample size for Laplacian correction
p
=
1
/
2
#Prior probability for Laplacian correction
for
(
j
in
3
:
dim
(
DemData
)[
2
])
{
ProbMat
[
1
,
j
-2
]
=
(
sum
(
DemData
[,
j
]
==
"y"
)
+
m
*
p
)
/
(
dim
(
DemData
)[
1
]
+
m
)
}
#Find Probabilities Associated with Republican Voting
GOPData
=
subset
(
TrainingData
,
TrainingData
$
Party
==
"republican"
)
for
(
j
in
3
:
dim
(
GOPData
)[
2
])
{
ProbMat
[
2
,
j
-2
]
=
(
sum
(
GOPData
[,
j
]
==
"y"
)
+
m
*
p
)
/
(
dim
(
GOPData
)[
1
]
+
m
)
}
#Tag on marignal probabilities
FinalInd
=
dim
(
ProbMat
)[
2
]
ProbMat
[
1
:
2
,
FinalInd
]
=
c
(
sum
(
TrainingData
$
Party
==
"democrat"
)
/
dim
(
TrainingData
)[
1
],
sum
(
TrainingData
$
Party
==
"republican"
)
/
dim
(
TrainingData
)[
1
])
colnames
(
ProbMat
)
=
c
(
names
(
data
)[
3
:
dim
(
data
)[
2
]],
"MargProb"
)
rownames
(
ProbMat
)
=
unique
(
TrainingData
$
Party
)
TestData
=
data
[(
TrainingSample
+1
)
:
dim
(
data
)[
1
],]
AssignedMat
=
matrix
(
0
,
dim
(
TestData
)[
1
],
3
)
#Use the NB classifier on test Data
VotingModel_fn
<-
function
(
TestVec
,
ProbMat
){
ProbTestMat
=
matrix
(
0
,
2
,
dim
(
ProbMat
)[
2
])
#TestVec is the member of interests' vote record
for
(
j
in
1
:
length
(
TestVec
)){
for
(
k
in
1
:
2
){
#Compute probabilities if vote yes or no via if loop
if
(
TestVec
[
j
]
==
"y"
){
ProbTestMat
[
k
,
j
]
=
ProbMat
[
k
,
j
]
}
else
{
ProbTestMat
[
k
,
j
]
=
1
-
ProbMat
[
k
,
j
]
}
}
}
ProbTestMat
[
1
:
2
,(
length
(
TestVec
)
+1
)]
=
ProbMat
[
1
:
2
,(
length
(
TestVec
)
+1
)]
Probs
=
apply
(
ProbTestMat
,
1
,
prod
)
#Compute product of probabilities for the candidate being of either party
ind
=
which.max
(
Probs
)
#Find which probability is higher
AssignedVec
=
c
(
Probs
,
unique
(
TrainingData
$
Party
)[
ind
])
#Probability of being a democrat, being a republican, and which one is assigned
return
(
list
(
AssignedVec
=
as.numeric
(
AssignedVec
[
1
:
2
]),
AssignedParty
=
AssignedVec
[
3
]))
#Elements returned as a list.
}
for
(
i
in
1
:
dim
(
TestData
)[
1
]){
for
(
j
in
3
:
dim
(
TestData
)[
2
]){
TestVec
=
TestData
[
i
,
3
:
dim
(
TestData
)[
2
]]
result
<-
VotingModel_fn
(
TestVec
,
ProbMat
)
AssignedMat
[
i
,]
=
c
(
as.numeric
(
result
$
AssignedVec
),
result
$
AssignedParty
)
}
}
CheckMat
=
data.frame
(
cbind
(
TestData
$
Party
,
AssignedMat
[,
3
]))
colnames
(
CheckMat
)
=
c
(
"Actual"
,
"Assigned"
)
Pct_Accuracy
=
sum
(
CheckMat
$
Actual
==
CheckMat
$
Assigned
)
/
dim
(
TestData
)[
1
]
#computes the percent accuracy
print
(
"Classifier Percent Accuracy"
)
#Print our accuracy as percent value.
print
(
Pct_Accuracy
)
Example
=
read.csv
(
"ArbitraryMember.csv"
)
result
<-
VotingModel_fn
(
Example
,
ProbMat
)
print
(
result
)
#Executing function in a sample data set to predict likelihood of voting
Example
=
read.csv
(
"ArbitraryMember.csv"
)
#load data
result
<-
VotingModel_fn
(
Example
,
ProbMat
)
print
(
result
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment