.Rhistory 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
names(new.theta) <- names(features)
alpha <- 0.01
# Utility functon that calculates the prediction for an observation
# given the current state of the hypothesis function.
#h.theta <- function(theta, observation) {
#  return(sum(theta * observation))
#  prediction <- 0.0
#  for(i in 1:length(theta)) {
#    prediction <- prediction + (theta[i] * observation[i])
#  }
#  return(prediction)
#}
# for(k in 1:2){
#   m <- ncol(features)
#
#   for(j in 1:m) {
#     n <- nrow(features)
#     summation <- 0.0
#
#     for(i in 1:n) {
# #      prediction <- h.theta(theta, features[i,])
#       prediction <- sum(theta * features[i,])
#       residual <- prediction - y[i]
#       update.value <- residual * features[i, j]
#       summation <- summation + update.value
#     }
#
#     new.theta[j] <- theta[j] + (alpha * summation)
#   }
#
#   theta <- new.theta
#
# #  print(theta)
# }
#
# print(theta)
iterations <- 250
X <- features
for(k in 1:iterations) {
for(j in 1:ncol(X)) {
summation <- 0
for(i in 1:nrow(X)) {
residual <- sum(X[i,] * theta[j]) - y[i]
summation <- summation + (residual * X[i, j])
}
new.theta[j] <- theta[j] - (alpha / nrow(X) * summation)
}
theta <- new.theta
}
lm.model
set.seed(1234)
x <- runif(1000, -5, 5)
y <- x + rnorm(1000) + 3
intercept <- rep(1, length(x))
lm.model <- lm(y ~ x)
summary(lm.model)
features <- data.frame(intercept = intercept, x = x)
theta <- rep(0, ncol(features))
names(theta) <- names(features)
theta
new.theta <- rep(0, ncol(features))
names(new.theta) <- names(features)
alpha <- 0.025
# Utility functon that calculates the prediction for an observation
# given the current state of the hypothesis function.
#h.theta <- function(theta, observation) {
#  return(sum(theta * observation))
#  prediction <- 0.0
#  for(i in 1:length(theta)) {
#    prediction <- prediction + (theta[i] * observation[i])
#  }
#  return(prediction)
#}
# for(k in 1:2){
#   m <- ncol(features)
#
#   for(j in 1:m) {
#     n <- nrow(features)
#     summation <- 0.0
#
#     for(i in 1:n) {
# #      prediction <- h.theta(theta, features[i,])
#       prediction <- sum(theta * features[i,])
#       residual <- prediction - y[i]
#       update.value <- residual * features[i, j]
#       summation <- summation + update.value
#     }
#
#     new.theta[j] <- theta[j] + (alpha * summation)
#   }
#
#   theta <- new.theta
#
# #  print(theta)
# }
#
# print(theta)
iterations <- 250
X <- features
for(k in 1:iterations) {
for(j in 1:ncol(X)) {
summation <- 0
for(i in 1:nrow(X)) {
residual <- sum(X[i,] * theta[j]) - y[i]
summation <- summation + (residual * X[i, j])
}
new.theta[j] <- theta[j] - (alpha / nrow(X) * summation)
}
theta <- new.theta
}
set.seed(1234)
x <- runif(1000, -5, 5)
y <- x + rnorm(1000) + 3
intercept <- rep(1, length(x))
lm.model <- lm(y ~ x)
summary(lm.model)
features <- data.frame(intercept = intercept, x = x)
theta <- rep(0, ncol(features))
names(theta) <- names(features)
theta
new.theta <- rep(0, ncol(features))
names(new.theta) <- names(features)
alpha <- 0.05
# Utility functon that calculates the prediction for an observation
# given the current state of the hypothesis function.
#h.theta <- function(theta, observation) {
#  return(sum(theta * observation))
#  prediction <- 0.0
#  for(i in 1:length(theta)) {
#    prediction <- prediction + (theta[i] * observation[i])
#  }
#  return(prediction)
#}
# for(k in 1:2){
#   m <- ncol(features)
#
#   for(j in 1:m) {
#     n <- nrow(features)
#     summation <- 0.0
#
#     for(i in 1:n) {
# #      prediction <- h.theta(theta, features[i,])
#       prediction <- sum(theta * features[i,])
#       residual <- prediction - y[i]
#       update.value <- residual * features[i, j]
#       summation <- summation + update.value
#     }
#
#     new.theta[j] <- theta[j] + (alpha * summation)
#   }
#
#   theta <- new.theta
#
# #  print(theta)
# }
#
# print(theta)
iterations <- 250
X <- features
for(k in 1:iterations) {
for(j in 1:ncol(X)) {
summation <- 0
for(i in 1:nrow(X)) {
residual <- sum(X[i,] * theta[j]) - y[i]
summation <- summation + (residual * X[i, j])
}
new.theta[j] <- theta[j] - (alpha / nrow(X) * summation)
}
theta <- new.theta
}
set.seed(1234)
x <- runif(1000, -5, 5)
y <- x + rnorm(1000) + 3
intercept <- rep(1, length(x))
lm.model <- lm(y ~ x)
summary(lm.model)
features <- data.frame(intercept = intercept, x = x)
theta <- rep(0, ncol(features))
names(theta) <- names(features)
theta
new.theta <- rep(0, ncol(features))
names(new.theta) <- names(features)
alpha <- 0.05
# Utility functon that calculates the prediction for an observation
# given the current state of the hypothesis function.
#h.theta <- function(theta, observation) {
#  return(sum(theta * observation))
#  prediction <- 0.0
#  for(i in 1:length(theta)) {
#    prediction <- prediction + (theta[i] * observation[i])
#  }
#  return(prediction)
#}
# for(k in 1:2){
#   m <- ncol(features)
#
#   for(j in 1:m) {
#     n <- nrow(features)
#     summation <- 0.0
#
#     for(i in 1:n) {
# #      prediction <- h.theta(theta, features[i,])
#       prediction <- sum(theta * features[i,])
#       residual <- prediction - y[i]
#       update.value <- residual * features[i, j]
#       summation <- summation + update.value
#     }
#
#     new.theta[j] <- theta[j] + (alpha * summation)
#   }
#
#   theta <- new.theta
#
# #  print(theta)
# }
#
# print(theta)
iterations <- 300
X <- features
for(k in 1:iterations) {
for(j in 1:ncol(X)) {
summation <- 0
for(i in 1:nrow(X)) {
residual <- sum(X[i,] * theta[j]) - y[i]
summation <- summation + (residual * X[i, j])
}
new.theta[j] <- theta[j] - (alpha / nrow(X) * summation)
}
theta <- new.theta
}
set.seed(1234)
x <- runif(1000, -5, 5)
y <- x + rnorm(1000) + 3
intercept <- rep(1, length(x))
lm.model <- lm(y ~ x)
summary(lm.model)
features <- data.frame(intercept = intercept, x = x)
theta <- rep(0, ncol(features))
names(theta) <- names(features)
theta
new.theta <- rep(0, ncol(features))
names(new.theta) <- names(features)
alpha <- 0.05
# Utility functon that calculates the prediction for an observation
# given the current state of the hypothesis function.
#h.theta <- function(theta, observation) {
#  return(sum(theta * observation))
#  prediction <- 0.0
#  for(i in 1:length(theta)) {
#    prediction <- prediction + (theta[i] * observation[i])
#  }
#  return(prediction)
#}
# for(k in 1:2){
#   m <- ncol(features)
#
#   for(j in 1:m) {
#     n <- nrow(features)
#     summation <- 0.0
#
#     for(i in 1:n) {
# #      prediction <- h.theta(theta, features[i,])
#       prediction <- sum(theta * features[i,])
#       residual <- prediction - y[i]
#       update.value <- residual * features[i, j]
#       summation <- summation + update.value
#     }
#
#     new.theta[j] <- theta[j] + (alpha * summation)
#   }
#
#   theta <- new.theta
#
# #  print(theta)
# }
#
# print(theta)
iterations <- 500
X <- features
for(k in 1:iterations) {
for(j in 1:ncol(X)) {
summation <- 0
for(i in 1:nrow(X)) {
residual <- sum(X[i,] * theta[j]) - y[i]
summation <- summation + (residual * X[i, j])
}
new.theta[j] <- theta[j] - (alpha / nrow(X) * summation)
}
theta <- new.theta
}
data(iria)
data(iris)
install.packages(c("lmtest", "mgcv", "nlme"))
data("iris")
library(GGally)
ggpairs(iris)
remove.packages("tibble")
library(GGally)
remove.packages("GGally")
remove.packages("plotly")
install.pacakges("GGally")
install.packages("GGally")
library(GGally)
install.packages(tibble)
install.packages("tibble")
library(GGally)
data("iris")
ggpairs(iris)
debugSource('~/Dropbox/AmsterdamBootcamp/GradientDescentExample.R', echo=TRUE)
debugSource('~/Dropbox/AmsterdamBootcamp/GradientDescentExample.R', echo=TRUE)
#
# Copyright 2017 Dave Langer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# This R source code file corresponds to video 10 of the YouTube series
# "R Programming for Excel Users" located at the following URL:
#      https://youtu.be/gYt05xI2Fm8
#
#===========================================================================
# Numeric Vectors
#
# Create a vector of integer values
my_vector <- 1:10
my_vector
# Inspect the vector more closely
class(my_vector)
str(my_vector)
summary(my_vector)
# Add 1 to each value of the vector
my_vector_plus1 <- my_vector + 1
my_vector_plus1
# Divide each value of the vector by 2
half_my_vector <- my_vector / 2
half_my_vector
# Make the vector whole again
whole_my_vector <- half_my_vector + half_my_vector
whole_my_vector
# Square the value of each vector
my_vector_squared1 <- my_vector * my_vector
my_vector_squared1
# Square the value of each vector
my_vector_squared2 <- my_vector ^ 2
my_vector_squared2
# Take the square root of each value
sqrt_my_vector <- sqrt(my_vector)
sqrt_my_vector
# More vectorized functions
sum(my_vector)
mean(my_vector)
sd(my_vector)
#===========================================================================
# Logical Vectors
#
# Which values are greater than 3.5?
larger_than_3.5 <- my_vector > 3.5
larger_than_3.5
# Inspect vector more closely
class(larger_than_3.5)
str(larger_than_3.5)
summary(larger_than_3.5)
# Grab only the values larger than 3.5
my_vector2 <- my_vector[larger_than_3.5]
my_vector2
# Grab only the values larger than 3.5
my_vector3 <- my_vector[my_vector > 3.5]
my_vector3
# Grow the vector
my_bigger_vector <- c(my_vector, 11:15, 16, 17, 18, 19, 20)
my_bigger_vector
# How big is it now?
length(my_bigger_vector)
dim(my_bigger_vector)
#===========================================================================
# String Vectors
#
# Create a vector of strings
force_users <- c("Yoda", "Darth Vader", "Obi Wan", "Mace Windu",
"Darth Maul", "Luke Skywalker", "Darth Sidious")
# Inspect vector more closely
class(force_users)
str(force_users)
summary(force_users)
# Add 1 to string vector
force_users + 1
# Add another force user
force_users <- force_users + "Kylo Ren"
# Add more force users
more_force_users <- c(force_users, "Qui-Gon Jinn", "Darth Tyranus")
more_force_users
# How big is the vector?
length(more_force_users)
# How long is each string in the vector?
name_lengths <- nchar(more_force_users)
name_lengths
#===========================================================================
# Missing Values
#
# Build a vector with missing values
birthplaces <- c(NA, "Tatooine", "Stewjon", "Haruun Kal", "Dathomir",
"Polis Massa", "Naboo", "Coruscant", "Serenno")
birthplaces
# Inspect closer
class(birthplaces)
str(birthplaces)
summary(birthplaces)
# Vectorized operation
is.na(birthplaces)
nchar(birthplaces)
nchar("")
# Logical operations
birthplaces[!is.na(birthplaces)]
#===========================================================================
# Factor Vectors
#
# Create factor (categorical) vector
affiliation <- as.factor(c("Jedi", "Sith", "Rogue"))
affiliation
# Inspect
class(affiliation)
str(affiliation)
summary(affiliation)
levels(affiliation)
# Explore representations
as.numeric(affiliation)
as.character(affiliation)
#===========================================================================
# Data Frames
#
star_wars <- data.frame(id = 1:length(more_force_users),
more_force_users,
birthplaces = as.factor(birthplaces),
affiliation = c("Jedi", "Sith",
"Jedi", "Jedi",
"Sith", "Jedi",
"Sith", "Jedi",
"Sith"),
stringsAsFactors = FALSE)
# Inspect
View(star_wars)
head(star_wars)
summary(star_wars)
str(star_wars)
# Set up factors
star_wars$affiliation <- as.factor(star_wars$affiliation)
# Reinspect
str(star_wars)
# Additional slicing syntax
star_wars$more_force_users[3]
star_wars$more_force_users[star_wars$affiliation == "Sith"]
# Load-up some built in data
data(iris)
data(mtcars)
# Get help on built-in data
?mtcars
# Understand the shape of a data frame
nrow(mtcars)
ncol(mtcars)
dim(mtcars)
# Understand the metadata of a data frame
names(mtcars)
names(mtcars)[3]
colnames(mtcars)
colnames(mtcars)[3:5]
rownames(mtcars)
rownames(mtcars)[c(3, 4, 5)]
# Cool RStudio feature - spreadsheet view of a data frame
View(mtcars)
# See a few rows at the top and bottom of a data frame
head(mtcars)
tail(mtcars)
# All-up view of a data frame
summary(mtcars)
# Understand the data type of a data frame
class(mtcars)
str(mtcars)
setwd("~/Dropbox/DataScienceDojo/IntroToTextAnalyticsWithR")
spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")
View(spam.raw)
# Clean up the data frame and view our handiwork.
spam.raw <- spam.raw[, 1:2]
names(spam.raw) <- c("Label", "Text")
View(spam.raw)
# Check data to see if there are missing values.
length(which(!complete.cases(spam.raw)))
# Convert our class label into a factor.
spam.raw$Label <- as.factor(spam.raw$Label)
# The first step, as always, is to explore the data.
# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).
prop.table(table(spam.raw$Label))
# Next up, let's get a feel for the distribution of text lengths of the SMS
# messages by adding a new feature for the length of each message.
spam.raw$TextLength <- nchar(spam.raw$Text)
summary(spam.raw$TextLength)
# Visualize distribution with ggplot2, adding segmentation for ham/spam.
library(ggplot2)
ggplot(spam.raw, aes(x = TextLength, fill = Label)) +
theme_bw() +
geom_histogram(binwidth = 5) +
labs(y = "Text Count", x = "Length of Text",
title = "Distribution of Text Lengths with Class Labels")