
Transformers have revolutionized natural language processing with their use of self-attention 

mechanisms. In this comprehensive blog post, we will build an intuition about how self-attention works 

and why it is so powerful. 

 

 

Introduction 

The Transformer architecture was first introduced in the 2017 paper "Attention is All You Need" by 

researchers at Google. Unlike previous sequence models such as RNNs, the Transformer relies entirely on 

self-attention to model dependencies in sequential data like text.  

Remarkably, this simple change led to major improvements in machine translation quality over existing 

methods. Since then, Transformers have been applied successfully to diverse NLP tasks like text 

generation, summarization, and question-answering. Their versatility has even led to applications in 

computer vision. 

But what exactly is self-attention and why is it so effective? In this post, we'll develop an intuition behind 

self-attention by stepping through a concrete example. 

 

 

The Limitations of RNNs  

Recurrent neural networks (RNNs) used to be the dominant approach for modeling sequences. An RNN 

processes textual data incrementally, maintaining a "memory" of the previous context. For example, to 

predict the next word in a sentence, an RNN model would incorporate information about all the 

preceding words. 

However, RNNs have certain limitations. They process data sequentially, making parallelization difficult. 

More critically, they struggle to learn long-range dependencies because the information gets diluted over 

many time steps. Attention mechanisms were proposed to mitigate this issue. 

 

 

Why Use a Transformer Model? 

The transformer architecture has enabled the development of new models that can be trained on large 

datasets and significantly outperform recurrent neural networks like LSTMs. These new models are 

utilized for tasks like sequence classification, question answering, language modeling, named entity 

recognition, summarization, and translation. 

Let’s examine the key components of transformers to understand how they have become the foundation 

for state-of-the-art performance on different NLP tasks. 

 



Transformer Design 

A transformer consists of an encoder and a decoder. The encoder's role is to encode the inputs (i.e. 

sentences) into a state, often containing multiple tensors. This state is then passed to the decoder to 

generate the outputs. In machine translation, the encoder converts a source sentence, e.g. "Hello 

world", into a state, such as a vector, that captures its semantic meaning. The decoder then utilizes this 

state to produce the translated target sentence, e.g. "Bonjour le monde." Both the encoder and decoder 

primarily employ Multi-Head Attention and Feedforward Networks, which are the main focus of this 

article.  

 

 

Key Transformer Components 

 

1. Input Embedding 

Embedding aims to create a vector representation of words where words with similar meanings 

will be close in terms of Euclidean distance. For instance, the words "bathroom" and "shower" 

are related to the same concept, so their word vectors are close in Euclidean space as they 

convey similar meanings. 

 



For the encoder, the authors opted for an embedding size of 512 (i.e. each word is represented 

by a 512-dimensional vector). 

 

 

 
 

2. Positional Encoding 

The position of a word plays a crucial role in understanding the sequence we want to model. 

Therefore, we add positional information about the word's location in the sequence to its vector. 

The authors used the following sinusoidal functions (see Figure 2) to represent a word's position 

within a sequence. 

 

 

 

 

 

We will explain positional encoding in 

more detail with an example. 

 

 
 

 

We note the position of each word in the sequence. 



We define dmodel = 512, which represents the size of the embedding vector of each word (i.e. the 

vector dimension). We can now rewrite the two positional encoding equations as: 

 

 

 

 

 

 

 

  

 

 

We can see that the wavelength (i.e. frequency) lambda_t decreases as the dimension increases, this 

forms a progression along the wave from 2pi to 10000.2pi. 

 

 

In this model, the absolute positional information of a word in a sequence is added directly to its initial 

vector. For this, the positional encoding must have the same size dmodel as the initial word vector. 

3. Attention Mechanism 

3.1. Scaled Dot-Product Attention 



 
 

Let's explain the attention mechanism. The key goal of attention is to estimate the relative 

relevance of the keywords compared to the query word for the same entity. For this, the 

attention mechanism takes a query vector Q representing a word, the keys K comprising all other 

words in the sentence, and values V representing the word vectors. 

 

In our case, V = Q (for the two self-attention layers). In other words, the attention mechanism 

provides the significance of a word in a given sentence. 

 

 
When we compute the normalized dot product between the query and the keys, we get a tensor 

that represents the relative importance of each other word for the query. To go deeper into 

mathematics, we can try to understand why the authors used a dot product to calculate the 

relation between two words. 

 

A word is represented by a vector in Euclidian space, in this case, a vector of size 512. 

 

When computing the dot product between Q and KT, we calculate the product between Q's 

orthogonal projection onto K. In other words, we estimate the alignment between the query and 

keyword vectors, returning a weight for each word in the sentence. 

 

We then normalize by dk to counteract large Q and K magnitudes which can push the softmax 

function into regions with tiny gradients. The softmax function regularizes the terms and rescales 



them between 0 and 1 (i.e., converts the dot product to a probability distribution), with the goal 

of normalizing all weights between 0 and 1. 

 

 

Finally, we multiply the weights (i.e. importances) by the values V to reduce irrelevant words and 

focus on the most significant words. 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, we multiply the weights (i.e., importances ) by the values V to reduce irrelevant words 

and focus on the most significant words. 

 

 

 

 
 

 

 

 

 

3.2. Multi-Head Attention 



 

 

 

The key idea is that attention is applied multiple times in parallel on different projections of the 

input queries, keys, and values. This allows the model to learn different types of dependencies 

between the input words. 

 

The input queries (Q), keys (K), and values (V) are each linearly projected h times into smaller 

subspaces. For example, h=8 times into 64-dimensional spaces. 

Attention is then applied in each of these h projected subspaces in parallel, yielding h different 

attention outputs. 

 

These h outputs are concatenated and linearly projected again to get the final values. 

The projections allow the model to focus on different positional and semantic relationships 

between words since each projected subspace captures different information. 

Doing this in parallel (multi-head) instead of sequentially improves efficiency. 

The projection matrices are learned during training to discover the most useful projections. 

So, in summary, multi-head attention applies the attention mechanism in multiple parallel 

subspaces to learn different types of dependencies between words in an efficient way. 

 

Let's dive into the mechanics of encoder-decoder architecture. 



 

Source: Attention is all you need. 

In this section, we'll explain how the encoder and decoder work together to translate an English 

sentence into a French one, step by step. 

1. Encoder 

1.1. Convert a sequence of tokens to a sequence of vectors by using embeddings. 

 

1.2. Add position information in each word vector 

 

https://arxiv.org/pdf/1706.03762.pdf


The key advantage of recurrent neural networks is their knack for understanding  

 relationships between sequences and remembering information. On the other hand, 

 Transformers employ positional encoding to factor in where words are located in a 

 sequence. 

1.3. Apply Multi Head Attention 

 

1.4. Use Feed Forward Network 

2. Decoder 

2.1. Utilize embeddings to transform a French sentence into vectors.  

 

2.2. Add positional details within each word vector.   

 

2.3. Apply Multi Head Attention 

 

2.4. Apply Feed Forward Network 

2.5. Apply Multi-Head Attention to the encoder output. 



 

We can observe that the Transformer combines the encoder's output with the decoder's 

 input. This enables it to discern the relationship between the vectors that encode the 

 English and French sentences. 

2.6. Apply Feed Forward Network again. 

2.7. Compute the probability for the next word by using linear + softmax block. The decoder 

returns the highest probability as the next word at the output. 

 

In our case, the next word after “Je” is “suis”. 

Result 

The transformer model outperforms all the models on different benchmarks also there was no difference 

seen between the translation provided by the algorithm and by humans.   

 


