
Transformers have revolutionized natural language processing with their use of self-attention

mechanisms. In this comprehensive blog post, we will build an intuition about how self-attention works

and why it is so powerful.

Introduction

The Transformer architecture was first introduced in the 2017 paper "Attention is All You Need" by

researchers at Google. Unlike previous sequence models such as RNNs, the Transformer relies entirely on

self-attention to model dependencies in sequential data like text.

Remarkably, this simple change led to major improvements in machine translation quality over existing

methods. Since then, Transformers have been applied successfully to diverse NLP tasks like text

generation, summarization, and question-answering. Their versatility has even led to applications in

computer vision.

But what exactly is self-attention and why is it so effective? In this post, we'll develop an intuition behind

self-attention by stepping through a concrete example.

The Limitations of RNNs

Recurrent neural networks (RNNs) used to be the dominant approach for modeling sequences. An RNN

processes textual data incrementally, maintaining a "memory" of the previous context. For example, to

predict the next word in a sentence, an RNN model would incorporate information about all the

preceding words.

However, RNNs have certain limitations. They process data sequentially, making parallelization difficult.

More critically, they struggle to learn long-range dependencies because the information gets diluted over

many time steps. Attention mechanisms were proposed to mitigate this issue.

Why Use a Transformer Model?

The transformer architecture has enabled the development of new models that can be trained on large

datasets and significantly outperform recurrent neural networks like LSTMs. These new models are

utilized for tasks like sequence classification, question answering, language modeling, named entity

recognition, summarization, and translation.

Let’s examine the key components of transformers to understand how they have become the foundation

for state-of-the-art performance on different NLP tasks.

Transformer Design

A transformer consists of an encoder and a decoder. The encoder's role is to encode the inputs (i.e.

sentences) into a state, often containing multiple tensors. This state is then passed to the decoder to

generate the outputs. In machine translation, the encoder converts a source sentence, e.g. "Hello

world", into a state, such as a vector, that captures its semantic meaning. The decoder then utilizes this

state to produce the translated target sentence, e.g. "Bonjour le monde." Both the encoder and decoder

primarily employ Multi-Head Attention and Feedforward Networks, which are the main focus of this

article.

Key Transformer Components

1. Input Embedding

Embedding aims to create a vector representation of words where words with similar meanings

will be close in terms of Euclidean distance. For instance, the words "bathroom" and "shower"

are related to the same concept, so their word vectors are close in Euclidean space as they

convey similar meanings.

For the encoder, the authors opted for an embedding size of 512 (i.e. each word is represented

by a 512-dimensional vector).

2. Positional Encoding

The position of a word plays a crucial role in understanding the sequence we want to model.

Therefore, we add positional information about the word's location in the sequence to its vector.

The authors used the following sinusoidal functions (see Figure 2) to represent a word's position

within a sequence.

We will explain positional encoding in

more detail with an example.

We note the position of each word in the sequence.

We define dmodel = 512, which represents the size of the embedding vector of each word (i.e. the

vector dimension). We can now rewrite the two positional encoding equations as:

We can see that the wavelength (i.e. frequency) lambda_t decreases as the dimension increases, this

forms a progression along the wave from 2pi to 10000.2pi.

In this model, the absolute positional information of a word in a sequence is added directly to its initial

vector. For this, the positional encoding must have the same size dmodel as the initial word vector.

3. Attention Mechanism

3.1. Scaled Dot-Product Attention

Let's explain the attention mechanism. The key goal of attention is to estimate the relative

relevance of the keywords compared to the query word for the same entity. For this, the

attention mechanism takes a query vector Q representing a word, the keys K comprising all other

words in the sentence, and values V representing the word vectors.

In our case, V = Q (for the two self-attention layers). In other words, the attention mechanism

provides the significance of a word in a given sentence.

When we compute the normalized dot product between the query and the keys, we get a tensor

that represents the relative importance of each other word for the query. To go deeper into

mathematics, we can try to understand why the authors used a dot product to calculate the

relation between two words.

A word is represented by a vector in Euclidian space, in this case, a vector of size 512.

When computing the dot product between Q and KT, we calculate the product between Q's

orthogonal projection onto K. In other words, we estimate the alignment between the query and

keyword vectors, returning a weight for each word in the sentence.

We then normalize by dk to counteract large Q and K magnitudes which can push the softmax

function into regions with tiny gradients. The softmax function regularizes the terms and rescales

them between 0 and 1 (i.e., converts the dot product to a probability distribution), with the goal

of normalizing all weights between 0 and 1.

Finally, we multiply the weights (i.e. importances) by the values V to reduce irrelevant words and

focus on the most significant words.

Finally, we multiply the weights (i.e., importances) by the values V to reduce irrelevant words

and focus on the most significant words.

3.2. Multi-Head Attention

The key idea is that attention is applied multiple times in parallel on different projections of the

input queries, keys, and values. This allows the model to learn different types of dependencies

between the input words.

The input queries (Q), keys (K), and values (V) are each linearly projected h times into smaller

subspaces. For example, h=8 times into 64-dimensional spaces.

Attention is then applied in each of these h projected subspaces in parallel, yielding h different

attention outputs.

These h outputs are concatenated and linearly projected again to get the final values.

The projections allow the model to focus on different positional and semantic relationships

between words since each projected subspace captures different information.

Doing this in parallel (multi-head) instead of sequentially improves efficiency.

The projection matrices are learned during training to discover the most useful projections.

So, in summary, multi-head attention applies the attention mechanism in multiple parallel

subspaces to learn different types of dependencies between words in an efficient way.

Let's dive into the mechanics of encoder-decoder architecture.

Source: Attention is all you need.

In this section, we'll explain how the encoder and decoder work together to translate an English

sentence into a French one, step by step.

1. Encoder

1.1. Convert a sequence of tokens to a sequence of vectors by using embeddings.

1.2. Add position information in each word vector

https://arxiv.org/pdf/1706.03762.pdf

The key advantage of recurrent neural networks is their knack for understanding

 relationships between sequences and remembering information. On the other hand,

 Transformers employ positional encoding to factor in where words are located in a

 sequence.

1.3. Apply Multi Head Attention

1.4. Use Feed Forward Network

2. Decoder

2.1. Utilize embeddings to transform a French sentence into vectors.

2.2. Add positional details within each word vector.

2.3. Apply Multi Head Attention

2.4. Apply Feed Forward Network

2.5. Apply Multi-Head Attention to the encoder output.

We can observe that the Transformer combines the encoder's output with the decoder's

 input. This enables it to discern the relationship between the vectors that encode the

 English and French sentences.

2.6. Apply Feed Forward Network again.

2.7. Compute the probability for the next word by using linear + softmax block. The decoder

returns the highest probability as the next word at the output.

In our case, the next word after “Je” is “suis”.

Result

The transformer model outperforms all the models on different benchmarks also there was no difference

seen between the translation provided by the algorithm and by humans.

