Commit 81285b11 by Rahim Rasool

Update README.md

parent 20e7ecb0
......@@ -3,7 +3,7 @@ Copyright (c) 2016 - 2019
---
**Level** Beginner <br/>
**Level** Intermediate <br/>
**Recommended Use:** Regression Models<br/>
**Domain:** Real Estate<br/>
......@@ -16,20 +16,27 @@ Copyright (c) 2016 - 2019
![](310.jpg)
---
This *intermediate* level data set has 398 rows and 9 columns and provides mileage, horsepower, model year, and other technical specifications for cars. This data set is recommended for learning and practicing your skills in **exploratory data analysis**, **data visualization**, and **regression modelling techniques**. Feel free to explore the data set with multiple **supervised** and **unsupervised** learning techniques. The Following data dictionary gives more details on this data set:
This *intermediate* level data set has 414 rows and 7 columns.
It provides the market historical data set of real estate valuations which are collected from Sindian Dist., New Taipei City, Taiwan.
This data set is recommended for learning and practicing your skills in **exploratory data analysis**, **data visualization**, and **regression modelling techniques**.
Feel free to explore the data set with multiple **supervised** and **unsupervised** learning techniques.
The Following data dictionary gives more details on this data set:
---
### Data Dictionary
| Column Position | Atrribute Name | Definition | Data Type | Example | % Null Ratios |
|------------------- |---------------------------------------- |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |-------------- |--------------------------------- |--------------- |
| 1 | X1 transaction date | The transaction date (for example, 2013.250=2013 March, 2013.500=2013 June, etc.) | Qualitative | 2013.500, 2013.500, 2013.333 | 0 |
| 2 | X2 house age | The house age (unit: year) | Quantitative | 19.5, 13.3, 5.0 | 0 |
| 3 | X3 distance to the nearest MRT station | The distance to the nearest MRT station (unit: meter) | Quantitative | 390.5684, 405.21340, 23.38284 | 0 |
| 4 | X4 number of convenience stores | The number of convenience stores in the living circle on foot | Quantitative | 6, 8, 1 | 0 |
| 5 | X5 latitude | The geographic coordinate, latitude (unit: degree) | Quantitative | 24.97937, 24.97544, 24.94925 | 0 |
| 6 | X6 longtitude | The geographic coordinate, longitude (unit: degree) | Quantitative | 121.54243, 121.49587, 121.51151 | 0 |
| 7 | Y house price of unit area | The house price of unit area (10000 New Taiwan Dollar/Ping, where Ping is a local unit, 1 Ping = 3.3 meter squared) for example, 29.3 = 293,000 New Taiwan Dollar/Ping | Quantitative | 29.3, 33.6, 47.7 | 0 |
### Acknowledgement
This data set has been sourced from the Machine Learning Repository of University of California, Irvine [Auto MPG Data Set (UC Irvine)](https://archive.ics.uci.edu/ml/datasets/auto+mpg). The UCI page mentions [StatLib (Carnegie Mellon University)](http://lib.stat.cmu.edu/datasets/) as the original source of the data set.
\ No newline at end of file
This data set has been sourced from the Machine Learning Repository of University of California, Irvine [Real Estate Valuation Data Set (UC Irvine)](https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set). The UCI page mentions the following as the original source of the data set: Yeh, I. C., & Hsu, T. K. (2018). Building real estate valuation models with comparative approach through case-based reasoning. Applied Soft Computing, 65, 260-271
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment