
Managing Machine Learning
Experiments

Dr. Rutu Mulkar

About me:
BS, MS, PhD in Computer Science

Ph.D. thesis in Natural Language Processing

Founder of AI company - Ticary Solutions - sold to Sigmoidal in 2019

Contributor to IBM Watson that defeated humans in Jeopardy!

Previously worked at:

Pricewaterhouse Coopers, IBM, Moz and a Healthcare company

Outline: Managing Machine Learning Experiments
● Typical ML pipeline
● How we are managing ML projects right now
● How ML workflow is different from Software Engineering
● Tools to manage your ML experiments better
● Open Source Software
● Paid Software
● Conclusion

Outline
● Typical ML pipeline
● How we are managing ML projects right now
● How ML workflow is different from Software Engineering
● Tools to manage your ML experiments better
● Open Source Software
● Paid Software
● Conclusion

Consider this scenario
You are a data scientist

You are provided with 10,000 samples of conversational data

You are asked to build a classifier to classify a question/sentence by intent

What time is it?

Can you tell me the time?

Set an alarm for 8:00PM

Can you remind me at 8:00PM?

A typical ML workflow

Write some
code

Test on a
sample of data

Test on more
data

Find the best
model

Push model
into production

Doesn’t work

It seems to
work

A typical ML workflow

Write some
code

Test on a
sample of data

Test on more
data

Find the best
model

Push model
into production

How to find the best model
- Add new features to your code

- Adding keywords like “time” indicate the red class
- Adding keywords like - “reminder”, “alarm” signify the green class
- Maybe use Word2Vec to get keywords similar to “time” and “alarm” (link)
- Use an n-gram word vectorizer

- Change the Algorithm
- Naive Bayes (baseline)
- Random Forests
- Recurrent Neural Networks

- Change hyperparameters
- Change the # of words, and # of chars
- Change the values or other values in built in functions

- Pipeline changes
- [remove sp chars, word chunking]
- [word chunking, remove sp chars]

http://turbomaze.github.io/word2vecjson/

We might record each code change in git

but

how can we record each training and testing run?

Outline
● Typical ML pipeline
● How we are managing ML projects right now
● How ML workflow is different from Software Engineering
● Tools to manage your ML experiments better
● Opensource Software
● Paid Software
● Conclusion

Documenting ML Experiments

Tracking ML Experiments

How to reproduce experiments?

- Make copies of each run that you run
- Commit each code change to git and tag it

Other things:

- Trained model
- Outputs
- Environment Variables

Tracking ML Experiments: Problems

- Separation of code, outputs and metrics
- No side by side comparison of code
- No side by side comparison of metrics
- Missing storage of

- Trained models
- Artifacts
- Outputs
- Environment variables

We are usually not very deliberate and disciplined about
storing each of these artifacts

I am not the only one with this issue
Some verbatim comments from others in the community

Industry

1. “I just don’t understand how they got that result”
2. “I thought I used the same parameters but I’m getting different results”
3. “I can’t remember which version of the code I used to generate Figure 6”
4. “The new employee wants to reuse that analysis I published three years ago but he can’t reproduce

the figures”
5. “It worked yesterday”

Academia

1. “The Materials and Methods section doesn’t explain how the results were normalized”
2. “The description in the Results section is different from what’s in the Supplementary Material”
3. “I’m sure I’m using the same parameters as the original authors, but I just can’t get it to work”

Reproducing code is hard!!
● What code was run?

● Which script?
○ name, location, version
○ options, parameters
○ dependencies (name, location,

version)
● What were the input data?
● What were the outputs?

● Machine name(s), other
identifiers (e.g. IP addresses)

● Processor architecture

● Available memory
● Operating system

○ why was it run?
○ what was the outcome?
○ which project was it part of

● Data, logs, stdout/stderr
○ who launched the computation?
○ when was it launched/when did it run?

(queueing systems)
○ where did it run?

This talk
● Typical ML pipeline
● How we are managing ML projects right now
● How ML workflow is different from Software Engineering
● Tools to manage your ML experiments better
● Opensource Software
● Paid Software
● Conclusion

Image Credit: Towards Data Science

Image Credit: Lean Software Engineering

Outline
● Typical ML pipeline
● How we are managing ML projects right now
● How ML workflow is different from Software Engineering
● Tools to manage your ML experiments better
● Opensource Software
● Paid Software
● Conclusion

Write Robust and Reproducible Code
1. Make your code modular
2. Write tests for your code
3. Work in virtual environments
4. Design your code to be easily understood by others (where “others” can also

include “yourself in-six-months-time”)

Make the code modular

Rule of thumb: If you find yourself repeating/duplicating any code, then make it
into its own function.

E.g. file opening and reading in a json or a csv

Automated Testing
● For all the tests you were performing manually before, write scripts
● Gives you confidence that your code is doing what you think it is doing
● Frees you to make wide-ranging changes to the code (for the purposes of

optimization or making the code more robust, for example) without worrying
that you will break something

● If you do break something, your tests will tell you immediately and you can
undo the change.

Automated testing
Initial time investment

● if you already perform manual, informal testing, this time will be paid back the
first or second time you run the automated suite of tests.

● Even if you did no testing at all previously, the loss of fear of changing code
will lead to more rapid progress.

Write tests
> nosetests

> nosetests --with-coverage --cover-package=<package name>

Work with a virtual environment
Advantages - reproducibility

Python3

Have a requirements.txt file to know the library dependencies

python3 -m venv env

. ./env/bin/activate

> pip install requirements.txt

> deactivate

requirements.txt
pip freeze

will tell you all the python modules on your system

most of which you don’t need

Pip freeze | grep <name>

get a specific package Sample requirements.txt

Ensure your code can be easily understood by
others
● Write comments explaining anything slightly complex, or why a particular

choice was made
● Write clear documentation

Outline
● Typical ML pipeline
● How we are managing ML projects right now
● How ML workflow is different from Software Engineering
● Tools to manage your ML experiments better
● Open Source Software
● Paid Software
● Conclusion

Experiment Management Systems
Guild Command Line guild run train.py https://guild.ai/

Sumatra Command Line
smt run --executable=python --
main=main.py

https://pythonhosted.org/Sumatra/

StudioML Command Line studio run train_mnist_keras.py https://github.com/studioml/studio

Datmo Immersive import datmo https://github.com/datmo/datmo

Modelchimp Immersive from modelchimp import Tracker https://modelchimp.com/

MLFlow Immersive
import mlflow

import mlflow.sklearn
https://mlflow.org/

Sacred Immersive from sacred import Experiment https://github.com/IDSIA/sacred

https://guild.ai/
https://pythonhosted.org/Sumatra/
https://github.com/studioml/studio
https://github.com/datmo/datmo
https://modelchimp.com/
https://mlflow.org/
https://github.com/IDSIA/sacred

Command Line

- Independent of Programming Language
- High freedom to code like you already do -

without changes in your workflow
- Need to learn new command line tools

Immersive

- Highly tied to the programming language
- Need to edit your workflow a little bit to fit

to the platform/software
- Need to learn an API

This talk
● Typical ML pipeline
● How we are managing ML projects right now
● How ML workflow is different from Software Engineering
● Tools to manage your ML experiments better
● Open Source Software
● Paid Software
● Conclusion

Paid Tools

Comet.ml https://www.comet.ml/ Immersive Startups, Individuals

Neptune.ml https://neptune.ml/ Immersive Startups, Individuals

Weights and
Biases

https://www.wandb.com/ Immersive Startups, Individuals

Determined
AI

https://determined.ai/ Immersive + Command Line Enterprises

Dot Science https://www.dotscience.com/ Immersive Startups, Individuals (Focus on
Jupyter Notebooks)

https://www.comet.ml/
https://neptune.ml/
https://www.wandb.com/
https://determined.ai/
https://www.dotscience.com/

Outline
● Typical ML pipeline
● How we are managing ML projects right now
● How ML workflow is different from Software Engineering
● Tools to manage your ML experiments better
● Open Source Software
● Paid Software
● Conclusion

Conclusion
ML process doesn’t have predefined guidelines

Best to practice Software Engineering design principles to write robust code

- Write modular code
- Write test cases
- Use Virtual environments (always)

When you are ready, start using open source tools for managing machine learning
experiments and models.

Once you are done using open source tools - start looking into paid software to
manage ML experiments

Thank you!
Questions?

@rutumulkar

	Managing Machine Learning Experiments
	About me:
	Outline: Managing Machine Learning Experiments
	Outline
	Consider this scenario
	A typical ML workflow
	A typical ML workflow
	How to find the best model
	Slide Number 9
	Outline
	Documenting ML Experiments
	Tracking ML Experiments
	Tracking ML Experiments: Problems
	I am not the only one with this issue
	Reproducing code is hard!!
	This talk
	Slide Number 17
	Outline
	Write Robust and Reproducible Code
	Make the code modular
	Automated Testing
	Automated testing
	Write tests
	Work with a virtual environment
	requirements.txt
	Ensure your code can be easily understood by others
	Outline
	Experiment Management Systems
	Slide Number 29
	This talk
	Paid Tools
	Outline
	Conclusion
	Thank you!
Questions?

