
Scaling R to Big Data

Data Science Dojo



Machine Learning Scaling

• Hadoop

• Spark

• H20

• R Server

• Revolution R

Distributed

• Azure ML

• AWS ML

• Big ML

• Cloud Virtual 

Machines

Cloud

• Python

• R

• SAS

• SPSS

Programming

• Excel

Programs

https://cran.r-project.org/web/views/HighPerformanceComputing.html

Distributed R Solutions:



Popularity Overall

Source:  http://www.tiobe.com/tiobe_index



Popularity for Data Science

Source:  http://www.kdnuggets.com/2014/08/four-main-languages-analytics-data-mining-data-science.html

kdnuggets poll on data mining and data science



R as a Movement

• Open-source

• 8000+ public packages

• Designed for statistical 

analysis, data analysis
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Distributed R Solutions:



R Limits

 Single core

 Single threaded

• Sequential processing, not parallel

 All in memory (RAM)

 Cannot be distributed across computers



R Limits: RAM

 All in memory (RAM)
𝑀𝑎𝑥 𝐷𝑎𝑡𝑎 𝐿𝑖𝑚𝑖𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝑅𝐴𝑀 𝐴𝑐𝑐𝑒𝑠𝑠 − 𝑁𝑜𝑟𝑚𝑎𝑙 𝑅𝐴𝑀 𝑈𝑠𝑎𝑔𝑒 𝑥 80%

Phuc’s Laptop Example:

𝑀𝑎𝑥 𝐷𝑎𝑡𝑎 𝐿𝑖𝑚𝑖𝑡 = 5.9𝑔𝑏 − 3.2𝑔𝑏 𝑥 80%
𝑀𝑎𝑥 𝐷𝑎𝑡𝑎 𝐿𝑖𝑚𝑖𝑡 = ~2.16𝑔𝑏



R Limits: RAM

Azure’s Biggest Virtual Machine

𝑀𝑎𝑥 𝐷𝑎𝑡𝑎 𝐿𝑖𝑚𝑖𝑡 = 448𝑔𝑏 − 1𝑔𝑏 𝑥 80%
𝑀𝑎𝑥 𝐷𝑎𝑡𝑎 𝐿𝑖𝑚𝑖𝑡 = ~𝟑𝟓𝟕. 𝟔𝒈𝒃



Machine Learning Scaling

• Hadoop

• Spark

• H20

• R Server

• Revolution R

Distributed

• Azure ML

• AWS ML

• Big ML

• Cloud Virtual 

Machines

Cloud

• Python

• R

• SAS

Programming

• Excel

Programs
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Distributed R Solutions:



Unlocking the Potential of R

 Single core (scaleR)

 Single threaded (scaleR)

• Sequential processing, not parallel

 All in memory (RAM) (scaleR)

 Cannot be distributed across computers 

(distributedR)



Why are we here?

Data (hidden value)           Big Data Tools                         Insights



Turtles all the way down…

IDE (Rstudio)

Compute Instance (R / R Server)

Distributed Computing 
(Hadoop/Spark/HDInsight)

Cloud Computing (Azure)

Your (big) Data

You (the user) are 
somewhere here



Why are these parts necessary?

IDE (RStudio)

Compute Instance (R / R Server)

Distributed Computing 
(Hadoop/Spark/HDInsight)

Cloud Computing (Azure)

Your (big) Data

Humans are visual, code faster

Unlocks cores, ram, thread limit of R

One computer alone, even a super 

computer may not be able to handle

The cloud has the computational 

power necessary to handle big data

Hidden insights, predictive model



(Vanilla/Base) Hadoop

Processing engine for distributed batch processing.



HDFS & MapReduce

60gb of 
Tweets

1 Computer

Processing: 30 hours

60gb



HDFS & MapReduce

60gb of 
Tweets

Processing: 15 hours

30gb

2 Computers



HDFS & MapReduce

60 Gb of 
Tweets

Processing: 10 hours

20Gb

3 Computers



Distributed Computing



Cloud Computing



Head Node

(Named Node)
Data  Nodes

If dogs were servers…



Most Cases, Linear Scaling Of 

Processing Power
Number of Computers Processing Time (hours)

1 30

2 15

3 10

4 7.5

5 6

6 5

7 4.26

8 3.75

9 3.33



Data
Node 2

Data
Node 1

Data
Node 3

Partition 3

Partition 2

Partition1

HDFS

HDFS 
Partitioning



First: Distributed Compute

Hadoop

Lots of Computers

Cloud (Azure)





• Ram + Solid State 
vs disk

• In-Memory: 100x 
times faster than 
Hadoop

• ~22x faster if Yarn 
is utilized in MR



Second: In Memory Compute

Spark

Hadoop

Lots of Computers (~2tb RAM each)

Cloud (Azure)



R Server

<Enterprise Platform>
• scaleR
• deployR
• connectR
• distributedR

Microsoft R Server

Cran + R Community
8000+ Packages

Open SourceCan install from
install.packages()

SSH

R Studio

R tools for VS



R Server

Connect R

• Ingress

Scale R

• Parallelization in a single computer

• Multi-core

• Mult-threading

• Data stream (not all in memory compute)

Distributed R

• Parallelization over multiple computers (HDFS)

Deploy R

• Talk to the outside world



R Server

Data Frame

<scaleR>
<SparkR>

Single Machine 
(local desktop)

HDFS

ScaleR RevolutionR Microsoft

SparkR Apache



Third: R Context Compute

R Server

Spark

Hadoop

Lots of Computers (~2tb RAM each)

Cloud (Azure)



R Server on HDInsight

User

<Ambari>
<hive>
<pig>
…

<R Server>
<R Studio>

…

Head Node Edge/Gateway Node

Spark/Tez/
MapReduce

ScaleR
DistributeR

Data Nodes & HDFS



Four: IDE (for quality of life)

RStudio Client

R Server

Spark

Hadoop

Lots of Computers (~2tb RAM each)

Cloud (Azure)



RStudio

User

<Ambari>
<hive>
<pig>
…

<R Server>
<R Studio>

…

Head Node Edge/Gateway Node

Spark/Tez/
MapReduce

scaleR
distributeR

Data Nodes & HDFS

SSH Tunnel

You



Compute Context

Example: 

rxSetComputeContext("local")  # Default, runs on edge node

myContext <- RxSpark()

rxSetComputeContext(myContext)   

# Computes using Spark Engine

Other compute context: https://azure.microsoft.com/en-us/documentation/articles/hdinsight-hadoop-r-server-compute-contexts/

https://azure.microsoft.com/en-us/documentation/articles/hdinsight-hadoop-r-server-compute-contexts/


Processing Times - Machine Learning

Data

Cleaning

Training

Prediction

Bottleneck

Hours

Days

Milliseconds

 Large scale systems are 
only needed for training

 Phones can use models 
outputted by mahout to 
predict new data

 After a model is trained, 
save the model to any 
IO file type and reload it 
where you want



QUESTIONS


