Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
tutorials
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
saeid
tutorials
Commits
b2293e72
Commit
b2293e72
authored
May 04, 2022
by
Sanghoon
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
c97d2992
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
241 additions
and
0 deletions
+241
-0
VotingModel_R_code_notebook.ipynb
...fication/Voting Example/VotingModel_R_code_notebook.ipynb
+241
-0
No files found.
Crash Course on Naive Bayes Classification/Voting Example/VotingModel_R_code_notebook.ipynb
0 → 100644
View file @
b2293e72
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Can these models be used to predict how lawmakers may vote?\n",
"\n",
"## Using Naive Bayes Classifier"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#Prepare a clean R environment in work space.\n",
"rm(list=ls())"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#Import our csv file data\n",
"data=read.csv(\"VotingData.csv\",header=TRUE) #Load data\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#Construct training data set\n",
"TrainingPct=0.6 #Percent of data to train model on\n",
"TrainingSample=floor(TrainingPct*dim(data)[1]) #Number of observations to train the model on\n",
"TestSample=dim(data)[1]-TrainingSample #Number of observations to test the model on\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"TrainingData=data[1:TrainingSample,] #Get the training data\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"#Find probabilities associtaed with democrat voting\n",
"DemData=subset(TrainingData,TrainingData$Party==\"democrat\")\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"#Store All Probabilities in a Matrix (2 rows, across all votes)\n",
"ProbMat=matrix(0,2,(dim(DemData)[2]-3+1+1))\n",
"\n",
"m=2 #Equivalent sample size for Laplacian correction\n",
"p=1/2 #Prior probability for Laplacian correction\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"for (j in 3:dim(DemData)[2])\n",
"{\n",
" ProbMat[1,j-2]=(sum(DemData[,j]==\"y\")+m*p)/(dim(DemData)[1]+m)\n",
" \n",
"}\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"#Find Probabilities Associated with Republican Voting\n",
"GOPData=subset(TrainingData,TrainingData$Party==\"republican\")\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"for (j in 3:dim(GOPData)[2])\n",
"{\n",
" ProbMat[2,j-2]=(sum(GOPData[,j]==\"y\")+m*p)/(dim(GOPData)[1]+m)\n",
" \n",
"}\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"#Tag on marignal probabilities\n",
"FinalInd=dim(ProbMat)[2]\n",
"ProbMat[1:2,FinalInd]=c(sum(TrainingData$Party==\"democrat\")/dim(TrainingData)[1],sum(TrainingData$Party==\"republican\")/dim(TrainingData)[1])\n",
"colnames(ProbMat)=c(names(data)[3:dim(data)[2]],\"MargProb\")\n",
"rownames(ProbMat)=unique(TrainingData$Party)\n",
"\n",
"TestData=data[(TrainingSample+1):dim(data)[1],]\n",
"AssignedMat=matrix(0,dim(TestData)[1],3)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"\n",
"#Use the NB classifier on test Data\n",
"VotingModel_fn<-function(TestVec,ProbMat){\n",
" \n",
" \n",
" ProbTestMat=matrix(0,2,dim(ProbMat)[2])\n",
" #TestVec is the member of interests' vote record\n",
" \n",
" for (j in 1:length(TestVec)){\n",
" for (k in 1:2){\n",
" #Compute probabilities if vote yes or no via if loop\n",
" \n",
" if (TestVec[j]==\"y\"){\n",
" ProbTestMat[k,j]=ProbMat[k,j]\n",
" } else {\n",
" ProbTestMat[k,j]=1-ProbMat[k,j]\n",
" }\n",
" }\n",
" }\n",
" \n",
" ProbTestMat[1:2,(length(TestVec)+1)]=ProbMat[1:2,(length(TestVec)+1)]\n",
" Probs=apply(ProbTestMat,1,prod) #Compute product of probabilities for the candidate being of either party\n",
" ind=which.max(Probs) #Find which probability is higher\n",
" AssignedVec=c(Probs,unique(TrainingData$Party)[ind]) #Probability of being a democrat, being a republican, and which one is assigned\n",
" \n",
" \n",
" return(list(AssignedVec=as.numeric(AssignedVec[1:2]),AssignedParty=AssignedVec[3])) #Elements returned as a list.\n",
"}\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for (i in 1:dim(TestData)[1]){\n",
" for (j in 3:dim(TestData)[2]){\n",
" \n",
" TestVec=TestData[i,3:dim(TestData)[2]]\n",
" result<-VotingModel_fn(TestVec,ProbMat)\n",
" AssignedMat[i,]=c(as.numeric(result$AssignedVec),result$AssignedParty)\n",
" }\n",
"}\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"CheckMat=data.frame(cbind(TestData$Party,AssignedMat[,3]))\n",
"colnames(CheckMat)=c(\"Actual\",\"Assigned\")\n",
"Pct_Accuracy=sum(CheckMat$Actual==CheckMat$Assigned)/dim(TestData)[1] #computes the percent accuracy\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Classifier Percent Accuracy\") #Print our accuracy as percent value.\n",
"print(Pct_Accuracy)\n",
"\n",
"Example=read.csv(\"ArbitraryMember.csv\")\n",
"result<-VotingModel_fn(Example,ProbMat)\n",
"print(result)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Executing function in a sample data set to predict likelihood of voting\n",
"Example=read.csv(\"ArbitraryMember.csv\") #load data\n",
"\n",
"result<-VotingModel_fn(Example,ProbMat)\n",
"print(result)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "3.4.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment