Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
tutorials
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
saeid
tutorials
Commits
137277c4
Commit
137277c4
authored
May 03, 2022
by
Sanghoon
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
bffca245
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
88 additions
and
0 deletions
+88
-0
pima_code.R
...n Naive Bayes Classification/Diabetes Example/pima_code.R
+88
-0
No files found.
Crash Course on Naive Bayes Classification/Diabetes Example/pima_code.R
0 → 100644
View file @
137277c4
#Develop algorithm to predict whether a person has diabetes given health factors
#Prepare a clean R environment in work space.
rm
(
list
=
ls
())
#Use setwd() to navigate the data directory and specify desired folder. Here we are using Rstudio Editor directory.
setwd
(
dirname
(
rstudioapi
::
getSourceEditorContext
()
$
path
))
#Import our csv file data
data
=
read.csv
(
"pima.csv"
,
header
=
TRUE
)
#Construct a training data set
TrainingPct
=
0.8
#Percent of data to train model on
TrainingSample
=
floor
(
TrainingPct
*
dim
(
data
)[
1
])
#Number of observations to train the model on , #dim()[n] = Retrieve or set the n dimension of an object
TestSample
=
dim
(
data
)[
1
]
-
TrainingSample
#Number of observations to test the model on
TrainingData
=
data
[
1
:
TrainingSample
,]
#Get the training data
Diabetes_categ
=
unique
(
TrainingData
$
diabetes
)
#Categorize diabetes by taking unique elements of the column diabetes(which is 0 and 1 in this case)
MeanMat
=
matrix
(
0
,
length
(
Diabetes_categ
),
dim
(
TrainingData
)[
2
]
-1
)
#Initialize matrix for mean values in training sample
SDMat
=
matrix
(
0
,
length
(
Diabetes_categ
),
dim
(
TrainingData
)[
2
]
-1
)
#Initialize matrix for standard deviations(st dev) in training sample
MargProb
=
rep
(
0
,
length
(
Diabetes_categ
))
#Initialize vector for marginal probabilities
for
(
i
in
1
:
length
(
Diabetes_categ
)){
#Using for loop, loop through whether or not the person has diabetes
Data_categ
=
subset
(
TrainingData
,
TrainingData
$
diabetes
==
Diabetes_categ
[
i
])
#Subset training sample based on whether or not the person has diabetes
for
(
j
in
1
:
(
dim
(
Data_categ
)[
2
]
-1
)){
#Using for loop, loop through obtain mean, st dev, and marginal probability
mean_val
=
mean
(
Data_categ
[,
j
])
#Calculates mean
sd_val
=
sd
(
Data_categ
[,
j
])
#Calculates st dev
MeanMat
[
i
,
j
]
=
mean_val
SDMat
[
i
,
j
]
=
sd_val
MargProb
[
i
]
=
dim
(
Data_categ
)[
1
]
/
dim
(
TrainingData
)[
1
]
#Calculates marginal probability
}
}
ProbList
=
list
(
MeanMat
=
MeanMat
,
SDMat
=
SDMat
,
MargProb
=
MargProb
)
#Stores the training data (mean, sd, marg prob in a list)
#Construct a test sample
TestData
=
data
[(
TrainingSample
+1
)
:
dim
(
data
)[
1
],]
#Select all except the training sample from the data
TestVec
=
TestData
[
1
,]
AssignedMat
=
matrix
(
0
,
dim
(
TestData
)[
1
],
3
)
#Construct a function NB classifier
pima_fn
<-
function
(
TestVec
,
ProbList
){
#Bring in training data as separate matrices and vectors - mean, st dev, and marg prob
MeanMat
=
ProbList
$
MeanMat
SDMat
=
ProbList
$
SDMat
MargProb
=
ProbList
$
MargProb
ProbTestMat
=
matrix
(
0
,
length
(
MargProb
),
length
(
TestVec
))
for
(
j
in
1
:
length
(
TestVec
)){
#Loop through the different elements of the patient (various variables)
for
(
k
in
1
:
length
(
ProbList
$
MargProb
)){
#Loop through the options as to whether or not the patient has diabetes
if
(
j
<
length
(
TestVec
))
{
ProbTestMat
[
k
,
j
]
=
dnorm
(
as.numeric
(
TestVec
[
j
]),
MeanMat
[
k
,
j
],
SDMat
[
k
,
j
])}
#Calculate the normal density value
else
{
ProbTestMat
[
k
,
j
]
=
MargProb
[
k
]}
#Calculate marg prob
}
Probs
=
apply
(
ProbTestMat
,
1
,
prod
)
#Calculate the product across probabilities
ind
=
which.max
(
Probs
)
#Find which probability is higher
AssignedVec
=
c
(
Probs
,
Diabetes_categ
[
ind
])
}
return
(
list
(
AssignedVec
=
AssignedVec
[
1
:
2
],
AssignedCondition
=
AssignedVec
[
3
]))
#Elements returned as a list.
}
#Load NB classifier
for
(
i
in
1
:
dim
(
TestData
)[
1
]){
TestVec
=
TestData
[
i
,
1
:
(
dim
(
TestData
)[
2
]
-1
)]
result
<-
pima_fn
(
TestVec
,
ProbList
)
AssignedMat
[
i
,]
=
c
(
as.numeric
(
result
$
AssignedVec
),
result
$
AssignedCondition
)
}
CheckMat
=
data.frame
(
cbind
(
TestData
$
diabetes
,
AssignedMat
[,
3
]))
colnames
(
CheckMat
)
=
c
(
"Actual"
,
"Assigned"
)
Pct_Accuracy
=
sum
(
CheckMat
$
Actual
==
CheckMat
$
Assigned
)
/
dim
(
TestData
)[
1
]
#Computes the percent accuracy
print
(
"Classifier Percent Accuracy"
)
#Print our accuracy as percent value.
print
(
Pct_Accuracy
)
#Executing function in a sample data set to predict likelihood of diabetes
Example
=
read.csv
(
file
=
"Example_Diabetes.csv"
,
header
=
TRUE
)
Ex1
<-
pima_fn
(
Example
[
1
,],
ProbList
)
Ex2
<-
pima_fn
(
Example
[
2
,],
ProbList
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment