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	#

	


	

	# Copyright 2017 Data Science Dojo

	


	

	# 

	


	

	# Licensed under the Apache License, Version 2.0 (the "License");

	


	

	# you may not use this file except in compliance with the License.

	


	

	# You may obtain a copy of the License at

	


	

	# 

	


	

	# http://www.apache.org/licenses/LICENSE-2.0

	


	

	#

	


	

	# Unless required by applicable law or agreed to in writing, software

	


	

	# distributed under the License is distributed on an "AS IS" BASIS,

	


	

	# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

	


	

	# See the License for the specific language governing permissions and

	


	

	# limitations under the License.

	


	

	# 

	


	

	

	


	

	

	


	

	#

	


	

	# This R source code file corresponds to the Data Science Dojo webinar 

	


	

	# titled "An Introduction to Data Visualization with R and ggplot2" 

	


	

	#

	


	

	

	


	

	#install.packages("ggplot2")

	


	

	library(ggplot2)

	


	

	

	


	

	

	


	

	# Load Titanic titanicing data for analysis. Open in spreadsheet view.

	


	

	titanic <- read.csv("titanic.csv", stringsAsFactors = FALSE)

	


	

	View(titanic)

	


	

	

	


	

	

	


	

	# Set up factors.

	


	

	titanic$Pclass <- as.factor(titanic$Pclass)

	


	

	titanic$Survived <- as.factor(titanic$Survived)

	


	

	titanic$Sex <- as.factor(titanic$Sex)

	


	

	titanic$Embarked <- as.factor(titanic$Embarked)

	


	

	

	


	

	

	


	

	#

	


	

	# We'll start our visual analysis of the data focusing on questions

	


	

	# related to survival rates. Specifically, these questions will use

	


	

	# the factor (i.e., categorical) variables in the data. Factor data

	


	

	# is very common in the business context and ggplot2 offers many

	


	

	# powerful features for visualizing factor data.

	


	

	#

	


	

	

	


	

	

	


	

	#

	


	

	# First question - What was the survival rate? 

	


	

	#

	


	

	# As Survived is a factor (i.e., categorical) variable, a bar chart 

	


	

	# is a great visualization to use.

	


	

	#

	


	

	ggplot(titanic, aes(x = Survived)) + 

	


	

	 geom_bar()

	


	

	

	


	

	# If you really want percentages.

	


	

	prop.table(table(titanic$Survived))

	


	

	

	


	

	# Add some customization for labels and theme.

	


	

	ggplot(titanic, aes(x = Survived)) + 

	


	

	 theme_bw() +

	


	

	 geom_bar() +

	


	

	 labs(y = "Passenger Count",

	


	

	 title = "Titanic Survival Rates")

	


	

	

	


	

	

	


	

	#

	


	

	# Second question - What was the survival rate by gender? 

	


	

	#

	


	

	# We can use color to look at two aspects (i.e., dimensions)

	


	

	# of the data simultaneously.

	


	

	#

	


	

	ggplot(titanic, aes(x = Sex, fill = Survived)) + 

	


	

	 theme_bw() +

	


	

	 geom_bar() +

	


	

	 labs(y = "Passenger Count",

	


	

	 title = "Titanic Survival Rates by Sex")

	


	

	

	


	

	

	


	

	#

	


	

	# Third question - What was the survival rate by class of ticket? 

	


	

	#

	


	

	ggplot(titanic, aes(x = Pclass, fill = Survived)) + 

	


	

	 theme_bw() +

	


	

	 geom_bar() +

	


	

	 labs(y = "Passenger Count",

	


	

	 title = "Titanic Survival Rates by Pclass")

	


	

	

	


	

	

	


	

	#

	


	

	# Fourth question - What was the survival rate by class of ticket

	


	

	# and gender?

	


	

	#

	


	

	# We can leverage facets to further segment the data and enable

	


	

	# "visual drill-down" into the data.

	


	

	#

	


	

	ggplot(titanic, aes(x = Sex, fill = Survived)) + 

	


	

	 theme_bw() +

	


	

	 facet_wrap(~ Pclass) +

	


	

	 geom_bar() +

	


	

	 labs(y = "Passenger Count",

	


	

	 title = "Titanic Survival Rates by Pclass and Sex")

	


	

	

	


	

	

	


	

	

	


	

	

	


	

	#

	


	

	# Next, we'll move on to visualizing continuous (i.e., numeric)

	


	

	# data using ggplot2. We'll explore visualizations of single 

	


	

	# numeric variables (i.e., columns) and also illustrate how

	


	

	# ggplot2 enables visual drill-down on numeric data.

	


	

	#

	


	

	

	


	

	

	


	

	#

	


	

	# Fifth Question - What is the distribution of passenger ages?

	


	

	#

	


	

	# The histogram is a staple of visualizing numeric data as it very 

	


	

	# powerfully communicates the distrubtion of a variable (i.e., column).

	


	

	#

	


	

	ggplot(titanic, aes(x = Age)) +

	


	

	 theme_bw() +

	


	

	 geom_histogram(binwidth = 5) +

	


	

	 labs(y = "Passenger Count",

	


	

	 x = "Age (binwidth = 5)",

	


	

	 title = "Titanic Age Distribtion")

	


	

	

	


	

	

	


	

	#

	


	

	# Sixth Question - What are the survival rates by age?

	


	

	#

	


	

	ggplot(titanic, aes(x = Age, fill = Survived)) +

	


	

	 theme_bw() +

	


	

	 geom_histogram(binwidth = 5) +

	


	

	 labs(y = "Passenger Count",

	


	

	 x = "Age (binwidth = 5)",

	


	

	 title = "Titanic Survival Rates by Age")

	


	

	

	


	

	# Another great visualization for this question is the box-and-whisker 

	


	

	# plot.

	


	

	ggplot(titanic, aes(x = Survived, y = Age)) +

	


	

	 theme_bw() +

	


	

	 geom_boxplot() +

	


	

	 labs(y = "Age",

	


	

	 x = "Survived",

	


	

	 title = "Titanic Survival Rates by Age")

	


	

	

	


	

	

	


	

	#

	


	

	# Seventh Question - What is the survival rates by age when segmented

	


	

	# by gender and class of ticket?

	


	

	#

	


	

	# A related visualization to the histogram is a density plot. Think of

	


	

	# a density plot as a smoothed version of the histogram. Using ggplot2

	


	

	# we can use facets to allow for visual drill-down via density plots.

	


	

	#

	


	

	ggplot(titanic, aes(x = Age, fill = Survived)) +

	


	

	 theme_bw() +

	


	

	 facet_wrap(Sex ~ Pclass) +

	


	

	 geom_density(alpha = 0.5) +

	


	

	 labs(y = "Age",

	


	

	 x = "Survived",

	


	

	 title = "Titanic Survival Rates by Age, Pclass and Sex")

	


	

	

	


	

	# If you prefer histograms, no problem!

	


	

	ggplot(titanic, aes(x = Age, fill = Survived)) +

	


	

	 theme_bw() +

	


	

	 facet_wrap(Sex ~ Pclass) +

	


	

	 geom_histogram(binwidth = 5) +

	


	

	 labs(y = "Age",

	


	

	 x = "Survived",

	


	

	 title = "Titanic Survival Rates by Age, Pclass and Sex")
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	# IntroDataVisualizationWithRAndGgplot2

	


	

	

	


	

	The public GitHub repository for Data Science Dojo's webinar titled "An Introduction to Data Visualization with R and ggplot2". 

	


	

	

	


	

	These materials make use of the data from Kaggle's [Titanic: Machine Learning from Disaster](https://www.kaggle.com/c/titanic) competition.

	


	

	

	


	

	Additionally, the following are required to use the files for the Meetup:

	


	

	

	


	

	* [The R programming language](https://cran.rstudio.com/)

	


	

	* While not required, [RStudio](https://www.rstudio.com/products/rstudio/download/) is highly recommended.

	


	

	* The [ggplot2](https://cran.r-project.org/web/packages/ggplot2/index.html) package.
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	#

	


	

	# Copyright 2017 Data Science Dojo

	


	

	# 

	


	

	# Licensed under the Apache License, Version 2.0 (the "License");

	


	

	# you may not use this file except in compliance with the License.

	


	

	# You may obtain a copy of the License at

	


	

	# 

	


	

	# http://www.apache.org/licenses/LICENSE-2.0

	


	

	#

	


	

	# Unless required by applicable law or agreed to in writing, software

	


	

	# distributed under the License is distributed on an "AS IS" BASIS,

	


	

	# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

	


	

	# See the License for the specific language governing permissions and

	


	

	# limitations under the License.

	


	

	# 

	


	

	

	


	

	

	


	

	#

	


	

	# This R source code file corresponds to video 1 of the Data Science

	


	

	# Dojo YouTube series "Introduction to Text Analytics with R" located 

	


	

	# at the following URL:

	


	

	# <YouTube Video Link Here /> 

	


	

	#

	


	

	

	


	

	

	


	

	# Install all required packages.

	


	

	install.packages(c("ggplot2", "e1071", "caret", "quanteda", 

	


	

	 "irlba", "randomForest"))

	


	

	

	


	

	

	


	

	

	


	

	

	


	

	# Load up the .CSV data and explore in RStudio.

	


	

	spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")

	


	

	View(spam.raw)

	


	

	

	


	

	

	


	

	

	


	

	# Clean up the data frame and view our handiwork.

	


	

	spam.raw <- spam.raw[, 1:2]

	


	

	names(spam.raw) <- c("Label", "Text")

	


	

	View(spam.raw)

	


	

	

	


	

	

	


	

	

	


	

	# Check data to see if there are missing values.

	


	

	length(which(!complete.cases(spam.raw)))

	


	

	

	


	

	

	


	

	

	


	

	# Convert our class label into a factor.

	


	

	spam.raw$Label <- as.factor(spam.raw$Label)

	


	

	

	


	

	

	


	

	

	


	

	# The first step, as always, is to explore the data.

	


	

	# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).

	


	

	prop.table(table(spam.raw$Label))

	


	

	

	


	

	

	


	

	

	


	

	# Next up, let's get a feel for the distribution of text lengths of the SMS 

	


	

	# messages by adding a new feature for the length of each message.

	


	

	spam.raw$TextLength <- nchar(spam.raw$Text)

	


	

	summary(spam.raw$TextLength)

	


	

	

	


	

	

	


	

	

	


	

	# Visualize distribution with ggplot2, adding segmentation for ham/spam.

	


	

	library(ggplot2)

	


	

	

	


	

	ggplot(spam.raw, aes(x = TextLength, fill = Label)) +

	


	

	 theme_bw() +

	


	

	 geom_histogram(binwidth = 5) +

	


	

	 labs(y = "Text Count", x = "Length of Text",

	


	

	 title = "Distribution of Text Lengths with Class Labels")
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	#

	


	

	# Copyright 2017 Data Science Dojo

	


	

	# 

	


	

	# Licensed under the Apache License, Version 2.0 (the "License");

	


	

	# you may not use this file except in compliance with the License.

	


	

	# You may obtain a copy of the License at

	


	

	# 

	


	

	# http://www.apache.org/licenses/LICENSE-2.0

	


	

	#

	


	

	# Unless required by applicable law or agreed to in writing, software

	


	

	# distributed under the License is distributed on an "AS IS" BASIS,

	


	

	# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

	


	

	# See the License for the specific language governing permissions and

	


	

	# limitations under the License.

	


	

	# 

	


	

	

	


	

	

	


	

	#

	


	

	# This R source code file corresponds to video 2 of the Data Science

	


	

	# Dojo YouTube series "Introduction to Text Analytics with R" located 

	


	

	# at the following URL:

	


	

	# https://www.youtube.com/watch?v=Y7385dGRNLM 

	


	

	#

	


	

	

	


	

	

	


	

	# Install all required packages.

	


	

	install.packages(c("ggplot2", "e1071", "caret", "quanteda", 

	


	

	 "irlba", "randomForest"))

	


	

	

	


	

	

	


	

	

	


	

	

	


	

	# Load up the .CSV data and explore in RStudio.

	


	

	spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")

	


	

	View(spam.raw)

	


	

	

	


	

	

	


	

	

	


	

	# Clean up the data frame and view our handiwork.

	


	

	spam.raw <- spam.raw[, 1:2]

	


	

	names(spam.raw) <- c("Label", "Text")

	


	

	View(spam.raw)

	


	

	

	


	

	

	


	

	

	


	

	# Check data to see if there are missing values.

	


	

	length(which(!complete.cases(spam.raw)))

	


	

	

	


	

	

	


	

	

	


	

	# Convert our class label into a factor.

	


	

	spam.raw$Label <- as.factor(spam.raw$Label)

	


	

	

	


	

	

	


	

	

	


	

	# The first step, as always, is to explore the data.

	


	

	# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).

	


	

	prop.table(table(spam.raw$Label))

	


	

	

	


	

	

	


	

	

	


	

	# Next up, let's get a feel for the distribution of text lengths of the SMS 

	


	

	# messages by adding a new feature for the length of each message.

	


	

	spam.raw$TextLength <- nchar(spam.raw$Text)

	


	

	summary(spam.raw$TextLength)

	


	

	

	


	

	

	


	

	

	


	

	# Visualize distribution with ggplot2, adding segmentation for ham/spam.

	


	

	library(ggplot2)

	


	

	

	


	

	ggplot(spam.raw, aes(x = TextLength, fill = Label)) +

	


	

	 theme_bw() +

	


	

	 geom_histogram(binwidth = 5) +

	


	

	 labs(y = "Text Count", x = "Length of Text",

	


	

	 title = "Distribution of Text Lengths with Class Labels")

	


	

	

	


	

	

	


	

	

	


	

	# At a minimum we need to split our data into a training set and a

	


	

	# test set. In a true project we would want to use a three-way split 

	


	

	# of training, validation, and test.

	


	

	#

	


	

	# As we know that our data has non-trivial class imbalance, we'll 

	


	

	# use the mighty caret package to create a randomg train/test split 

	


	

	# that ensures the correct ham/spam class label proportions (i.e., 

	


	

	# we'll use caret for a random stratified split).

	


	

	library(caret)

	


	

	help(package = "caret")

	


	

	

	


	

	

	


	

	# Use caret to create a 70%/30% stratified split. Set the random

	


	

	# seed for reproducibility.

	


	

	set.seed(32984)

	


	

	indexes <- createDataPartition(spam.raw$Label, times = 1,

	


	

	 p = 0.7, list = FALSE)

	


	

	

	


	

	train <- spam.raw[indexes,]

	


	

	test <- spam.raw[-indexes,]

	


	

	

	


	

	

	


	

	# Verify proportions.

	


	

	prop.table(table(train$Label))

	


	

	prop.table(table(test$Label))
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	#

	


	

	# Copyright 2017 Data Science Dojo

	


	

	# 

	


	

	# Licensed under the Apache License, Version 2.0 (the "License");

	


	

	# you may not use this file except in compliance with the License.

	


	

	# You may obtain a copy of the License at

	


	

	# 

	


	

	# http://www.apache.org/licenses/LICENSE-2.0

	


	

	#

	


	

	# Unless required by applicable law or agreed to in writing, software

	


	

	# distributed under the License is distributed on an "AS IS" BASIS,

	


	

	# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

	


	

	# See the License for the specific language governing permissions and

	


	

	# limitations under the License.

	


	

	# 

	


	

	

	


	

	

	


	

	#

	


	

	# This R source code file corresponds to video 3 of the Data Science

	


	

	# Dojo YouTube series "Introduction to Text Analytics with R" located 

	


	

	# at the following URL:

	


	

	# https://www.youtube.com/watch?v=CQsyVDxK7_g 

	


	

	#

	


	

	

	


	

	

	


	

	# Install all required packages.

	


	

	install.packages(c("ggplot2", "e1071", "caret", "quanteda", 

	


	

	 "irlba", "randomForest"))

	


	

	

	


	

	

	


	

	

	


	

	

	


	

	# Load up the .CSV data and explore in RStudio.

	


	

	spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")

	


	

	View(spam.raw)

	


	

	

	


	

	

	


	

	

	


	

	# Clean up the data frame and view our handiwork.

	


	

	spam.raw <- spam.raw[, 1:2]

	


	

	names(spam.raw) <- c("Label", "Text")

	


	

	View(spam.raw)

	


	

	

	


	

	

	


	

	

	


	

	# Check data to see if there are missing values.

	


	

	length(which(!complete.cases(spam.raw)))

	


	

	

	


	

	

	


	

	

	


	

	# Convert our class label into a factor.

	


	

	spam.raw$Label <- as.factor(spam.raw$Label)

	


	

	

	


	

	

	


	

	

	


	

	# The first step, as always, is to explore the data.

	


	

	# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).

	


	

	prop.table(table(spam.raw$Label))

	


	

	

	


	

	

	


	

	

	


	

	# Next up, let's get a feel for the distribution of text lengths of the SMS 

	


	

	# messages by adding a new feature for the length of each message.

	


	

	spam.raw$TextLength <- nchar(spam.raw$Text)

	


	

	summary(spam.raw$TextLength)

	


	

	

	


	

	

	


	

	

	


	

	# Visualize distribution with ggplot2, adding segmentation for ham/spam.

	


	

	library(ggplot2)

	


	

	

	


	

	ggplot(spam.raw, aes(x = TextLength, fill = Label)) +

	


	

	 theme_bw() +

	


	

	 geom_histogram(binwidth = 5) +

	


	

	 labs(y = "Text Count", x = "Length of Text",

	


	

	 title = "Distribution of Text Lengths with Class Labels")

	


	

	

	


	

	

	


	

	

	


	

	# At a minimum we need to split our data into a training set and a

	


	

	# test set. In a true project we would want to use a three-way split 

	


	

	# of training, validation, and test.

	


	

	#

	


	

	# As we know that our data has non-trivial class imbalance, we'll 

	


	

	# use the mighty caret package to create a randomg train/test split 

	


	

	# that ensures the correct ham/spam class label proportions (i.e., 

	


	

	# we'll use caret for a random stratified split).

	


	

	library(caret)

	


	

	help(package = "caret")

	


	

	

	


	

	

	


	

	# Use caret to create a 70%/30% stratified split. Set the random

	


	

	# seed for reproducibility.

	


	

	set.seed(32984)

	


	

	indexes <- createDataPartition(spam.raw$Label, times = 1,

	


	

	 p = 0.7, list = FALSE)

	


	

	

	


	

	train <- spam.raw[indexes,]

	


	

	test <- spam.raw[-indexes,]

	


	

	

	


	

	

	


	

	# Verify proportions.

	


	

	prop.table(table(train$Label))

	


	

	prop.table(table(test$Label))

	


	

	

	


	

	

	


	

	

	


	

	# Text analytics requires a lot of data exploration, data pre-processing

	


	

	# and data wrangling. Let's explore some examples.

	


	

	

	


	

	# HTML-escaped ampersand character.

	


	

	train$Text[21]

	


	

	

	


	

	

	


	

	# HTML-escaped '<' and '>' characters. Also note that Mallika Sherawat

	


	

	# is an actual person, but we will ignore the implications of this for

	


	

	# this introductory tutorial.

	


	

	train$Text[38]

	


	

	

	


	

	

	


	

	# A URL.

	


	

	train$Text[357]

	


	

	

	


	

	

	


	

	

	


	

	# There are many packages in the R ecosystem for performing text

	


	

	# analytics. One of the newer packages in quanteda. The quanteda

	


	

	# package has many useful functions for quickly and easily working

	


	

	# with text data.

	


	

	library(quanteda)

	


	

	help(package = "quanteda")

	


	

	

	


	

	

	


	

	# Tokenize SMS text messages.

	


	

	train.tokens <- tokens(train$Text, what = "word", 

	


	

	 remove_numbers = TRUE, remove_punct = TRUE,

	


	

	 remove_symbols = TRUE, remove_hyphens = TRUE)

	


	

	

	


	

	# Take a look at a specific SMS message and see how it transforms.

	


	

	train.tokens[[357]]

	


	

	

	


	

	

	


	

	# Lower case the tokens.

	


	

	train.tokens <- tokens_tolower(train.tokens)

	


	

	train.tokens[[357]]

	


	

	

	


	

	

	


	

	# Use quanteda's built-in stopword list for English.

	


	

	# NOTE - You should always inspect stopword lists for applicability to

	


	

	# your problem/domain.

	


	

	train.tokens <- tokens_select(train.tokens, stopwords(), 

	


	

	 selection = "remove")

	


	

	train.tokens[[357]]

	


	

	

	


	

	

	


	

	# Perform stemming on the tokens.

	


	

	train.tokens <- tokens_wordstem(train.tokens, language = "english")

	


	

	train.tokens[[357]]

	


	

	

	


	

	

	


	

	# Create our first bag-of-words model.

	


	

	train.tokens.dfm <- dfm(train.tokens, tolower = FALSE)

	


	

	

	


	

	

	


	

	# Transform to a matrix and inspect.

	


	

	train.tokens.matrix <- as.matrix(train.tokens.dfm)

	


	

	View(train.tokens.matrix[1:20, 1:100])

	


	

	dim(train.tokens.matrix)

	


	

	

	


	

	

	


	

	# Investigate the effects of stemming.

	


	

	colnames(train.tokens.matrix)[1:50]
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	#

	


	

	# Copyright 2017 Data Science Dojo

	


	

	# 

	


	

	# Licensed under the Apache License, Version 2.0 (the "License");

	


	

	# you may not use this file except in compliance with the License.

	


	

	# You may obtain a copy of the License at

	


	

	# 

	


	

	# http://www.apache.org/licenses/LICENSE-2.0

	


	

	#

	


	

	# Unless required by applicable law or agreed to in writing, software

	


	

	# distributed under the License is distributed on an "AS IS" BASIS,

	


	

	# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

	


	

	# See the License for the specific language governing permissions and

	


	

	# limitations under the License.

	


	

	# 

	


	

	

	


	

	

	


	

	#

	


	

	# This R source code file corresponds to video 4 of the Data Science

	


	

	# Dojo YouTube series "Introduction to Text Analytics with R" located 

	


	

	# at the following URL:

	


	

	# https://www.youtube.com/watch?v=IFhDlHKRHno 

	


	

	#

	


	

	

	


	

	

	


	

	# Install all required packages.

	


	

	install.packages(c("ggplot2", "e1071", "caret", "quanteda", 

	


	

	 "irlba", "randomForest"))

	


	

	

	


	

	

	


	

	

	


	

	

	


	

	# Load up the .CSV data and explore in RStudio.

	


	

	spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")

	


	

	View(spam.raw)

	


	

	

	


	

	

	


	

	

	


	

	# Clean up the data frame and view our handiwork.

	


	

	spam.raw <- spam.raw[, 1:2]

	


	

	names(spam.raw) <- c("Label", "Text")

	


	

	View(spam.raw)

	


	

	

	


	

	

	


	

	

	


	

	# Check data to see if there are missing values.

	


	

	length(which(!complete.cases(spam.raw)))

	


	

	

	


	

	

	


	

	

	


	

	# Convert our class label into a factor.

	


	

	spam.raw$Label <- as.factor(spam.raw$Label)

	


	

	

	


	

	

	


	

	

	


	

	# The first step, as always, is to explore the data.

	


	

	# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).

	


	

	prop.table(table(spam.raw$Label))

	


	

	

	


	

	

	


	

	

	


	

	# Next up, let's get a feel for the distribution of text lengths of the SMS 

	


	

	# messages by adding a new feature for the length of each message.

	


	

	spam.raw$TextLength <- nchar(spam.raw$Text)

	


	

	summary(spam.raw$TextLength)

	


	

	

	


	

	

	


	

	

	


	

	# Visualize distribution with ggplot2, adding segmentation for ham/spam.

	


	

	library(ggplot2)

	


	

	

	


	

	ggplot(spam.raw, aes(x = TextLength, fill = Label)) +

	


	

	 theme_bw() +

	


	

	 geom_histogram(binwidth = 5) +

	


	

	 labs(y = "Text Count", x = "Length of Text",

	


	

	 title = "Distribution of Text Lengths with Class Labels")

	


	

	

	


	

	

	


	

	

	


	

	# At a minimum we need to split our data into a training set and a

	


	

	# test set. In a true project we would want to use a three-way split 

	


	

	# of training, validation, and test.

	


	

	#

	


	

	# As we know that our data has non-trivial class imbalance, we'll 

	


	

	# use the mighty caret package to create a randomg train/test split 

	


	

	# that ensures the correct ham/spam class label proportions (i.e., 

	


	

	# we'll use caret for a random stratified split).

	


	

	library(caret)

	


	

	help(package = "caret")

	


	

	

	


	

	

	


	

	# Use caret to create a 70%/30% stratified split. Set the random

	


	

	# seed for reproducibility.

	


	

	set.seed(32984)

	


	

	indexes <- createDataPartition(spam.raw$Label, times = 1,

	


	

	 p = 0.7, list = FALSE)

	


	

	

	


	

	train <- spam.raw[indexes,]

	


	

	test <- spam.raw[-indexes,]

	


	

	

	


	

	

	


	

	# Verify proportions.

	


	

	prop.table(table(train$Label))

	


	

	prop.table(table(test$Label))

	


	

	

	


	

	

	


	

	

	


	

	# Text analytics requires a lot of data exploration, data pre-processing

	


	

	# and data wrangling. Let's explore some examples.

	


	

	

	


	

	# HTML-escaped ampersand character.

	


	

	train$Text[21]

	


	

	

	


	

	

	


	

	# HTML-escaped '<' and '>' characters. Also note that Mallika Sherawat

	


	

	# is an actual person, but we will ignore the implications of this for

	


	

	# this introductory tutorial.

	


	

	train$Text[38]

	


	

	

	


	

	

	


	

	# A URL.

	


	

	train$Text[357]

	


	

	

	


	

	

	


	

	

	


	

	# There are many packages in the R ecosystem for performing text

	


	

	# analytics. One of the newer packages in quanteda. The quanteda

	


	

	# package has many useful functions for quickly and easily working

	


	

	# with text data.

	


	

	library(quanteda)

	


	

	help(package = "quanteda")

	


	

	

	


	

	

	


	

	# Tokenize SMS text messages.

	


	

	train.tokens <- tokens(train$Text, what = "word", 

	


	

	 remove_numbers = TRUE, remove_punct = TRUE,

	


	

	 remove_symbols = TRUE, remove_hyphens = TRUE)

	


	

	

	


	

	# Take a look at a specific SMS message and see how it transforms.

	


	

	train.tokens[[357]]

	


	

	

	


	

	

	


	

	# Lower case the tokens.

	


	

	train.tokens <- tokens_tolower(train.tokens)

	


	

	train.tokens[[357]]

	


	

	

	


	

	

	


	

	# Use quanteda's built-in stopword list for English.

	


	

	# NOTE - You should always inspect stopword lists for applicability to

	


	

	# your problem/domain.

	


	

	train.tokens <- tokens_select(train.tokens, stopwords(), 

	


	

	 selection = "remove")

	


	

	train.tokens[[357]]

	


	

	

	


	

	

	


	

	# Perform stemming on the tokens.

	


	

	train.tokens <- tokens_wordstem(train.tokens, language = "english")

	


	

	train.tokens[[357]]

	


	

	

	


	

	

	


	

	# Create our first bag-of-words model.

	


	

	train.tokens.dfm <- dfm(train.tokens, tolower = FALSE)

	


	

	

	


	

	

	


	

	# Transform to a matrix and inspect.

	


	

	train.tokens.matrix <- as.matrix(train.tokens.dfm)

	


	

	View(train.tokens.matrix[1:20, 1:100])

	


	

	dim(train.tokens.matrix)

	


	

	

	


	

	

	


	

	# Investigate the effects of stemming.

	


	

	colnames(train.tokens.matrix)[1:50]

	


	

	

	


	

	

	


	

	# Per best practices, we will leverage cross validation (CV) as

	


	

	# the basis of our modeling process. Using CV we can create 

	


	

	# estimates of how well our model will do in Production on new,

	


	

	# unseen data. CV is powerful, but the downside is that it

	


	

	# requires more processing and therefore more time.

	


	

	#

	


	

	# If you are not familiar with CV, consult the following 

	


	

	# Wikipedia article:

	


	

	#

	


	

	# https://en.wikipedia.org/wiki/Cross-validation_(statistics)

	


	

	#

	


	

	

	


	

	# Setup a the feature data frame with labels.

	


	

	train.tokens.df <- cbind(Label = train$Label, data.frame(train.tokens.dfm))

	


	

	

	


	

	

	


	

	# Often, tokenization requires some additional pre-processing

	


	

	names(train.tokens.df)[c(146, 148, 235, 238)]

	


	

	

	


	

	

	


	

	# Cleanup column names.

	


	

	names(train.tokens.df) <- make.names(names(train.tokens.df))

	


	

	

	


	

	

	


	

	# Use caret to create stratified folds for 10-fold cross validation repeated 

	


	

	# 3 times (i.e., create 30 random stratified samples)

	


	

	set.seed(48743)

	


	

	cv.folds <- createMultiFolds(train$Label, k = 10, times = 3)

	


	

	

	


	

	cv.cntrl <- trainControl(method = "repeatedcv", number = 10,

	


	

	 repeats = 3, index = cv.folds)

	


	

	

	


	

	

	


	

	# Our data frame is non-trivial in size. As such, CV runs will take 

	


	

	# quite a long time to run. To cut down on total execution time, use

	


	

	# the doSNOW package to allow for multi-core training in parallel.

	


	

	#

	


	

	# WARNING - The following code is configured to run on a workstation-

	


	

	# or server-class machine (i.e., 12 logical cores). Alter

	


	

	# code to suit your HW environment.

	


	

	#

	


	

	#install.packages("doSNOW")

	


	

	library(doSNOW)

	


	

	

	


	

	

	


	

	# Time the code execution

	


	

	start.time <- Sys.time()

	


	

	

	


	

	

	


	

	# Create a cluster to work on 10 logical cores.

	


	

	cl <- makeCluster(10, type = "SOCK")

	


	

	registerDoSNOW(cl)

	


	

	

	


	

	

	


	

	# As our data is non-trivial in size at this point, use a single decision

	


	

	# tree alogrithm as our first model. We will graduate to using more 

	


	

	# powerful algorithms later when we perform feature extraction to shrink

	


	

	# the size of our data.

	


	

	rpart.cv.1 <- train(Label ~ ., data = train.tokens.df, method = "rpart", 

	


	

	 trControl = cv.cntrl, tuneLength = 7)

	


	

	

	


	

	

	


	

	# Processing is done, stop cluster.

	


	

	stopCluster(cl)

	


	

	

	


	

	

	


	

	# Total time of execution on workstation was approximately 4 minutes. 

	


	

	total.time <- Sys.time() - start.time

	


	

	total.time

	


	

	

	


	

	

	


	

	# Check out our results.

	


	

	rpart.cv.1
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	#

	


	

	# Copyright 2017 Data Science Dojo

	


	

	# 

	


	

	# Licensed under the Apache License, Version 2.0 (the "License");

	


	

	# you may not use this file except in compliance with the License.

	


	

	# You may obtain a copy of the License at

	


	

	# 

	


	

	# http://www.apache.org/licenses/LICENSE-2.0

	


	

	#

	


	

	# Unless required by applicable law or agreed to in writing, software

	


	

	# distributed under the License is distributed on an "AS IS" BASIS,

	


	

	# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

	


	

	# See the License for the specific language governing permissions and

	


	

	# limitations under the License.

	


	

	# 

	


	

	

	


	

	

	


	

	#

	


	

	# This R source code file corresponds to video 5 of the Data Science

	


	

	# Dojo YouTube series "Introduction to Text Analytics with R" located 

	


	

	# at the following URL:

	


	

	# https://www.youtube.com/watch?v=az7yf0IfWPM 

	


	

	#

	


	

	

	


	

	

	


	

	# Install all required packages.

	


	

	install.packages(c("ggplot2", "e1071", "caret", "quanteda", 

	


	

	 "irlba", "randomForest"))

	


	

	

	


	

	

	


	

	

	


	

	

	


	

	# Load up the .CSV data and explore in RStudio.

	


	

	spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")

	


	

	View(spam.raw)

	


	

	

	


	

	

	


	

	

	


	

	# Clean up the data frame and view our handiwork.

	


	

	spam.raw <- spam.raw[, 1:2]

	


	

	names(spam.raw) <- c("Label", "Text")

	


	

	View(spam.raw)

	


	

	

	


	

	

	


	

	

	


	

	# Check data to see if there are missing values.

	


	

	length(which(!complete.cases(spam.raw)))

	


	

	

	


	

	

	


	

	

	


	

	# Convert our class label into a factor.

	


	

	spam.raw$Label <- as.factor(spam.raw$Label)

	


	

	

	


	

	

	


	

	

	


	

	# The first step, as always, is to explore the data.

	


	

	# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).

	


	

	prop.table(table(spam.raw$Label))

	


	

	

	


	

	

	


	

	

	


	

	# Next up, let's get a feel for the distribution of text lengths of the SMS 

	


	

	# messages by adding a new feature for the length of each message.

	


	

	spam.raw$TextLength <- nchar(spam.raw$Text)

	


	

	summary(spam.raw$TextLength)

	


	

	

	


	

	

	


	

	

	


	

	# Visualize distribution with ggplot2, adding segmentation for ham/spam.

	


	

	library(ggplot2)

	


	

	

	


	

	ggplot(spam.raw, aes(x = TextLength, fill = Label)) +

	


	

	 theme_bw() +

	


	

	 geom_histogram(binwidth = 5) +

	


	

	 labs(y = "Text Count", x = "Length of Text",

	


	

	 title = "Distribution of Text Lengths with Class Labels")

	


	

	

	


	

	

	


	

	

	


	

	# At a minimum we need to split our data into a training set and a

	


	

	# test set. In a true project we would want to use a three-way split 

	


	

	# of training, validation, and test.

	


	

	#

	


	

	# As we know that our data has non-trivial class imbalance, we'll 

	


	

	# use the mighty caret package to create a randomg train/test split 

	


	

	# that ensures the correct ham/spam class label proportions (i.e., 

	


	

	# we'll use caret for a random stratified split).

	


	

	library(caret)

	


	

	help(package = "caret")

	


	

	

	


	

	

	


	

	# Use caret to create a 70%/30% stratified split. Set the random

	


	

	# seed for reproducibility.

	


	

	set.seed(32984)

	


	

	indexes <- createDataPartition(spam.raw$Label, times = 1,

	


	

	 p = 0.7, list = FALSE)

	


	

	

	


	

	train <- spam.raw[indexes,]

	


	

	test <- spam.raw[-indexes,]

	


	

	

	


	

	

	


	

	# Verify proportions.

	


	

	prop.table(table(train$Label))

	


	

	prop.table(table(test$Label))

	


	

	

	


	

	

	


	

	

	


	

	# Text analytics requires a lot of data exploration, data pre-processing

	


	

	# and data wrangling. Let's explore some examples.

	


	

	

	


	

	# HTML-escaped ampersand character.

	


	

	train$Text[21]

	


	

	

	


	

	

	


	

	# HTML-escaped '<' and '>' characters. Also note that Mallika Sherawat

	


	

	# is an actual person, but we will ignore the implications of this for

	


	

	# this introductory tutorial.

	


	

	train$Text[38]

	


	

	

	


	

	

	


	

	# A URL.

	


	

	train$Text[357]

	


	

	

	


	

	

	


	

	

	


	

	# There are many packages in the R ecosystem for performing text

	


	

	# analytics. One of the newer packages in quanteda. The quanteda

	


	

	# package has many useful functions for quickly and easily working

	


	

	# with text data.

	


	

	library(quanteda)

	


	

	help(package = "quanteda")

	


	

	

	


	

	

	


	

	# Tokenize SMS text messages.

	


	

	train.tokens <- tokens(train$Text, what = "word", 

	


	

	 remove_numbers = TRUE, remove_punct = TRUE,

	


	

	 remove_symbols = TRUE, remove_hyphens = TRUE)

	


	

	

	


	

	# Take a look at a specific SMS message and see how it transforms.

	


	

	train.tokens[[357]]

	


	

	

	


	

	

	


	

	# Lower case the tokens.

	


	

	train.tokens <- tokens_tolower(train.tokens)

	


	

	train.tokens[[357]]

	


	

	

	


	

	

	


	

	# Use quanteda's built-in stopword list for English.

	


	

	# NOTE - You should always inspect stopword lists for applicability to

	


	

	# your problem/domain.

	


	

	train.tokens <- tokens_select(train.tokens, stopwords(), 

	


	

	 selection = "remove")

	


	

	train.tokens[[357]]

	


	

	

	


	

	

	


	

	# Perform stemming on the tokens.

	


	

	train.tokens <- tokens_wordstem(train.tokens, language = "english")

	


	

	train.tokens[[357]]

	


	

	

	


	

	

	


	

	# Create our first bag-of-words model.

	


	

	train.tokens.dfm <- dfm(train.tokens, tolower = FALSE)

	


	

	

	


	

	

	


	

	# Transform to a matrix and inspect.

	


	

	train.tokens.matrix <- as.matrix(train.tokens.dfm)

	


	

	View(train.tokens.matrix[1:20, 1:100])

	


	

	dim(train.tokens.matrix)

	


	

	

	


	

	

	


	

	# Investigate the effects of stemming.

	


	

	colnames(train.tokens.matrix)[1:50]

	


	

	

	


	

	

	


	

	# Per best practices, we will leverage cross validation (CV) as

	


	

	# the basis of our modeling process. Using CV we can create 

	


	

	# estimates of how well our model will do in Production on new,

	


	

	# unseen data. CV is powerful, but the downside is that it

	


	

	# requires more processing and therefore more time.

	


	

	#

	


	

	# If you are not familiar with CV, consult the following 

	


	

	# Wikipedia article:

	


	

	#

	


	

	# https://en.wikipedia.org/wiki/Cross-validation_(statistics)

	


	

	#

	


	

	

	


	

	# Setup a the feature data frame with labels.

	


	

	train.tokens.df <- cbind(Label = train$Label, data.frame(train.tokens.dfm))

	


	

	

	


	

	

	


	

	# Often, tokenization requires some additional pre-processing

	


	

	names(train.tokens.df)[c(146, 148, 235, 238)]

	


	

	

	


	

	

	


	

	# Cleanup column names.

	


	

	names(train.tokens.df) <- make.names(names(train.tokens.df))

	


	

	

	


	

	

	


	

	# Use caret to create stratified folds for 10-fold cross validation repeated 

	


	

	# 3 times (i.e., create 30 random stratified samples)

	


	

	set.seed(48743)

	


	

	cv.folds <- createMultiFolds(train$Label, k = 10, times = 3)

	


	

	

	


	

	cv.cntrl <- trainControl(method = "repeatedcv", number = 10,

	


	

	 repeats = 3, index = cv.folds)

	


	

	

	


	

	

	


	

	# Our data frame is non-trivial in size. As such, CV runs will take 

	


	

	# quite a long time to run. To cut down on total execution time, use

	


	

	# the doSNOW package to allow for multi-core training in parallel.

	


	

	#

	


	

	# WARNING - The following code is configured to run on a workstation-

	


	

	# or server-class machine (i.e., 12 logical cores). Alter

	


	

	# code to suit your HW environment.

	


	

	#

	


	

	#install.packages("doSNOW")

	


	

	library(doSNOW)

	


	

	

	


	

	

	


	

	# Time the code execution

	


	

	start.time <- Sys.time()

	


	

	

	


	

	

	


	

	# Create a cluster to work on 10 logical cores.

	


	

	cl <- makeCluster(10, type = "SOCK")

	


	

	registerDoSNOW(cl)

	


	

	

	


	

	

	


	

	# As our data is non-trivial in size at this point, use a single decision

	


	

	# tree alogrithm as our first model. We will graduate to using more 

	


	

	# powerful algorithms later when we perform feature extraction to shrink

	


	

	# the size of our data.

	


	

	rpart.cv.1 <- train(Label ~ ., data = train.tokens.df, method = "rpart", 

	


	

	 trControl = cv.cntrl, tuneLength = 7)

	


	

	

	


	

	

	


	

	# Processing is done, stop cluster.

	


	

	stopCluster(cl)

	


	

	

	


	

	

	


	

	# Total time of execution on workstation was approximately 4 minutes. 

	


	

	total.time <- Sys.time() - start.time

	


	

	total.time

	


	

	

	


	

	

	


	

	# Check out our results.

	


	

	rpart.cv.1

	


	

	

	


	

	

	


	

	

	


	

	# The use of Term Frequency-Inverse Document Frequency (TF-IDF) is a 

	


	

	# powerful technique for enhancing the information/signal contained

	


	

	# within our document-frequency matrix. Specifically, the mathematics

	


	

	# behind TF-IDF accomplish the following goals:

	


	

	# 1 - The TF calculation accounts for the fact that longer 

	


	

	# documents will have higher individual term counts. Applying

	


	

	# TF normalizes all documents in the corpus to be length 

	


	

	# independent.

	


	

	# 2 - The IDF calculation accounts for the frequency of term

	


	

	# appearance in all documents in the corpus. The intuition 

	


	

	# being that a term that appears in every document has no

	


	

	# predictive power.

	


	

	# 3 - The multiplication of TF by IDF for each cell in the matrix

	


	

	# allows for weighting of #1 and #2 for each cell in the matrix.

	


	

	

	


	

	

	


	

	# Our function for calculating relative term frequency (TF)

	


	

	term.frequency <- function(row) {

	


	

	 row / sum(row)

	


	

	}

	


	

	

	


	

	# Our function for calculating inverse document frequency (IDF)

	


	

	inverse.doc.freq <- function(col) {

	


	

	 corpus.size <- length(col)

	


	

	 doc.count <- length(which(col > 0))

	


	

	

	


	

	 log10(corpus.size / doc.count)

	


	

	}

	


	

	

	


	

	# Our function for calculating TF-IDF.

	


	

	tf.idf <- function(x, idf) {

	


	

	 x * idf

	


	

	}

	


	

	

	


	

	

	


	

	# First step, normalize all documents via TF.

	


	

	train.tokens.df <- apply(train.tokens.matrix, 1, term.frequency)

	


	

	dim(train.tokens.df)

	


	

	View(train.tokens.df[1:20, 1:100])

	


	

	

	


	

	

	


	

	# Second step, calculate the IDF vector that we will use - both

	


	

	# for training data and for test data!

	


	

	train.tokens.idf <- apply(train.tokens.matrix, 2, inverse.doc.freq)

	


	

	str(train.tokens.idf)

	


	

	

	


	

	

	


	

	# Lastly, calculate TF-IDF for our training corpus.

	


	

	train.tokens.tfidf <- apply(train.tokens.df, 2, tf.idf, idf = train.tokens.idf)

	


	

	dim(train.tokens.tfidf)

	


	

	View(train.tokens.tfidf[1:25, 1:25])

	


	

	

	


	

	

	


	

	# Transpose the matrix

	


	

	train.tokens.tfidf <- t(train.tokens.tfidf)

	


	

	dim(train.tokens.tfidf)

	


	

	View(train.tokens.tfidf[1:25, 1:25])

	


	

	

	


	

	

	


	

	# Check for incopmlete cases.

	


	

	incomplete.cases <- which(!complete.cases(train.tokens.tfidf))

	


	

	train$Text[incomplete.cases]

	


	

	

	


	

	

	


	

	# Fix incomplete cases

	


	

	train.tokens.tfidf[incomplete.cases,] <- rep(0.0, ncol(train.tokens.tfidf))

	


	

	dim(train.tokens.tfidf)

	


	

	sum(which(!complete.cases(train.tokens.tfidf)))

	


	

	

	


	

	

	


	

	# Make a clean data frame using the same process as before.

	


	

	train.tokens.tfidf.df <- cbind(Label = train$Label, data.frame(train.tokens.tfidf))

	


	

	names(train.tokens.tfidf.df) <- make.names(names(train.tokens.tfidf.df))
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	# IntroToTextAnalyticsWithR

	


	

	Public repo for the Data Science Dojo YouTube tutorial series [Introduction to Text Analytics with R](https://www.youtube.com/playlist?list=PL8eNk_zTBST8olxIRFoo0YeXxEOkYdoxi). This tutorial series leverages the [Kaggle SMS Spam Collection Dataset](https://www.kaggle.com/uciml/sms-spam-collection-dataset) originally published by [UCI ML Repository](https://archive.ics.uci.edu/ml/datasets/sms+spam+collection)

	


	

	

	


	

	

	


	

	- [Introduction to Text Analytics with R - Part 1](https://www.youtube.com/watch?v=4vuw0AsHeGw)

	


	

	- [Introduction to Text Analytics with R - Part 2](https://www.youtube.com/watch?v=Y7385dGRNLM)

	


	

	- [Introduction to Text Analytics with R - Part 3](https://www.youtube.com/watch?v=CQsyVDxK7_g)

	


	

	- [Introduction to Text Analytics with R - Part 4](https://www.youtube.com/watch?v=IFhDlHKRHno)

	


	

	- [Introduction to Text Analytics with R - Part 5](https://www.youtube.com/watch?v=az7yf0IfWPM)

	


	

	- [Introduction to Text Analytics with R - Part 6](https://www.youtube.com/watch?v=neiW5Ugsob8)

	


	

	- [Introduction to Text Analytics with R - Part 7](https://www.youtube.com/watch?v=Fza5szojsU8)

	


	

	- [Introduction to Text Analytics with R - Part 8](https://www.youtube.com/watch?v=4DI68P4hicQ)

	


	

	- [Introduction to Text Analytics with R - Part 9](https://www.youtube.com/watch?v=SgrLE6WQzkE)

	


	

	- [Introduction to Text Analytics with R - Part 10](https://www.youtube.com/watch?v=7cwBhWYHgsA)

	


	

	- [Introduction to Text Analytics with R - Part 11](https://www.youtube.com/watch?v=XWUi7RivDJY)

	


	

	- [Introduction to Text Analytics with R - Part 12](https://www.youtube.com/watch?v=-wCrClheObk)
			\ No newline at end of file
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