

Skip to content

	Projects

	Groups

	Snippets

	
Help

	

This project

	

Loading...

	

	

Sign in / Register

Toggle navigation

tutorials

	

Overview

	
Overview

	
	Details

	Activity

	Cycle Analytics

	

Repository

	
Repository

	
	Files

	Commits

	Branches

	Tags

	Contributors

	Graph

	Compare

	Charts

	

Issues

0

	
Issues

0

	
	
List

	
Board

	
Labels

	
Milestones

	

Merge Requests

0

	
Merge Requests

0

	

CI / CD

	
CI / CD

	
	
Pipelines

	
Jobs

	
Schedules

	
Charts

	

Wiki

	
Wiki

	

Snippets

	
Snippets

	

Members

	
Members

Collapse sidebar

Close sidebar

	

Activity

	
Graph

	
Charts

	
Create a new issue

	
Jobs

	
Commits

	
Issue Boards

Open sidebar

	Eric Durkopp
	
tutorials
	Commits
	
22f44079

Commit
22f44079

authored
Mar 15, 2018
by

Arham Akheel

Browse files

Options

	
Browse Files

	

	

	
	
Download

	Email Patches
	Plain Diff

Migrating Introduction to Text Analytics with R to tutorials repository.

parent
66399e2d

Expand all
Hide whitespace changes

Inline
Side-by-side

Showing
32 changed files

with
1126 additions
and
1 deletions

+1126
-1

	

IntroDataVizRAndGgplot2.R

...isualization with R and ggplot2/IntroDataVizRAndGgplot2.R

+174
-0

	

IntroDataVizWithRAndGgplot2.pdf

...zation with R and ggplot2/IntroDataVizWithRAndGgplot2.pdf

+0
-0

	

README.md

...uction to Data Visualization with R and ggplot2/README.md

+11
-0

	

titanic.csv

...tion to Data Visualization with R and ggplot2/titanic.csv

+0
-0

	

Introduction to Text Analytics with R

Introduction to Text Analytics with R

+0
-1

	

.Rhistory

Introduction to Text Analytics with R/.Rhistory

+0
-0

	

IntroToTextAnalyticsWithR_Part1.pdf

...Text Analytics with R/IntroToTextAnalyticsWithR_Part1.pdf

+0
-0

	

IntroToTextAnalyticsWithR_Part10.pdf

...ext Analytics with R/IntroToTextAnalyticsWithR_Part10.pdf

+0
-0

	

IntroToTextAnalyticsWithR_Part12.pdf

...ext Analytics with R/IntroToTextAnalyticsWithR_Part12.pdf

+0
-0

	

IntroToTextAnalyticsWithR_Part2.pdf

...Text Analytics with R/IntroToTextAnalyticsWithR_Part2.pdf

+0
-0

	

IntroToTextAnalyticsWithR_Part5.pdf

...Text Analytics with R/IntroToTextAnalyticsWithR_Part5.pdf

+0
-0

	

IntroToTextAnalyticsWithR_Part6.pdf

...Text Analytics with R/IntroToTextAnalyticsWithR_Part6.pdf

+0
-0

	

IntroToTextAnalyticsWithR_Part7.pdf

...Text Analytics with R/IntroToTextAnalyticsWithR_Part7.pdf

+0
-0

	

IntroToTextAnalyticsWithR_Part9.pdf

...Text Analytics with R/IntroToTextAnalyticsWithR_Part9.pdf

+0
-0

	

IntroToTextAnalytics_Part1.R

...ion to Text Analytics with R/IntroToTextAnalytics_Part1.R

+76
-0

	

IntroToTextAnalytics_Part10.R

...on to Text Analytics with R/IntroToTextAnalytics_Part10.R

+0
-0

	

IntroToTextAnalytics_Part11.R

...on to Text Analytics with R/IntroToTextAnalytics_Part11.R

+0
-0

	

IntroToTextAnalytics_Part12.R

...on to Text Analytics with R/IntroToTextAnalytics_Part12.R

+0
-0

	

IntroToTextAnalytics_Part2.R

...ion to Text Analytics with R/IntroToTextAnalytics_Part2.R

+105
-0

	

IntroToTextAnalytics_Part3.R

...ion to Text Analytics with R/IntroToTextAnalytics_Part3.R

+172
-0

	

IntroToTextAnalytics_Part4.R

...ion to Text Analytics with R/IntroToTextAnalytics_Part4.R

+247
-0

	

IntroToTextAnalytics_Part5.R

...ion to Text Analytics with R/IntroToTextAnalytics_Part5.R

+324
-0

	

IntroToTextAnalytics_Part6.R

...ion to Text Analytics with R/IntroToTextAnalytics_Part6.R

+0
-0

	

IntroToTextAnalytics_Part7.R

...ion to Text Analytics with R/IntroToTextAnalytics_Part7.R

+0
-0

	

IntroToTextAnalytics_Part8.R

...ion to Text Analytics with R/IntroToTextAnalytics_Part8.R

+0
-0

	

IntroToTextAnalytics_Part9.R

...ion to Text Analytics with R/IntroToTextAnalytics_Part9.R

+0
-0

	

README.md

Introduction to Text Analytics with R/README.md

+17
-0

	

rf.cv.1.RData

Introduction to Text Analytics with R/rf.cv.1.RData

+0
-0

	

rf.cv.2.RData

Introduction to Text Analytics with R/rf.cv.2.RData

+0
-0

	

rf.cv.3.RData

Introduction to Text Analytics with R/rf.cv.3.RData

+0
-0

	

rf.cv.4.RData

Introduction to Text Analytics with R/rf.cv.4.RData

+0
-0

	

spam.csv

Introduction to Text Analytics with R/spam.csv

+0
-0

	

No files found.

Introduction to Data Visualization with R and ggplot2/IntroDataVizRAndGgplot2.R

0 → 100644

View file @ 22f44079

	

	

	#

	

	

	# Copyright 2017 Data Science Dojo

	

	

	#

	

	

	# Licensed under the Apache License, Version 2.0 (the "License");

	

	

	# you may not use this file except in compliance with the License.

	

	

	# You may obtain a copy of the License at

	

	

	#

	

	

	# http://www.apache.org/licenses/LICENSE-2.0

	

	

	#

	

	

	# Unless required by applicable law or agreed to in writing, software

	

	

	# distributed under the License is distributed on an "AS IS" BASIS,

	

	

	# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

	

	

	# See the License for the specific language governing permissions and

	

	

	# limitations under the License.

	

	

	#

	

	

	

	

	

	

	

	

	#

	

	

	# This R source code file corresponds to the Data Science Dojo webinar

	

	

	# titled "An Introduction to Data Visualization with R and ggplot2"

	

	

	#

	

	

	

	

	

	#install.packages("ggplot2")

	

	

	library(ggplot2)

	

	

	

	

	

	

	

	

	# Load Titanic titanicing data for analysis. Open in spreadsheet view.

	

	

	titanic <- read.csv("titanic.csv", stringsAsFactors = FALSE)

	

	

	View(titanic)

	

	

	

	

	

	

	

	

	# Set up factors.

	

	

	titanic$Pclass <- as.factor(titanic$Pclass)

	

	

	titanic$Survived <- as.factor(titanic$Survived)

	

	

	titanic$Sex <- as.factor(titanic$Sex)

	

	

	titanic$Embarked <- as.factor(titanic$Embarked)

	

	

	

	

	

	

	

	

	#

	

	

	# We'll start our visual analysis of the data focusing on questions

	

	

	# related to survival rates. Specifically, these questions will use

	

	

	# the factor (i.e., categorical) variables in the data. Factor data

	

	

	# is very common in the business context and ggplot2 offers many

	

	

	# powerful features for visualizing factor data.

	

	

	#

	

	

	

	

	

	

	

	

	#

	

	

	# First question - What was the survival rate?

	

	

	#

	

	

	# As Survived is a factor (i.e., categorical) variable, a bar chart

	

	

	# is a great visualization to use.

	

	

	#

	

	

	ggplot(titanic, aes(x = Survived)) +

	

	

	 geom_bar()

	

	

	

	

	

	# If you really want percentages.

	

	

	prop.table(table(titanic$Survived))

	

	

	

	

	

	# Add some customization for labels and theme.

	

	

	ggplot(titanic, aes(x = Survived)) +

	

	

	 theme_bw() +

	

	

	 geom_bar() +

	

	

	 labs(y = "Passenger Count",

	

	

	 title = "Titanic Survival Rates")

	

	

	

	

	

	

	

	

	#

	

	

	# Second question - What was the survival rate by gender?

	

	

	#

	

	

	# We can use color to look at two aspects (i.e., dimensions)

	

	

	# of the data simultaneously.

	

	

	#

	

	

	ggplot(titanic, aes(x = Sex, fill = Survived)) +

	

	

	 theme_bw() +

	

	

	 geom_bar() +

	

	

	 labs(y = "Passenger Count",

	

	

	 title = "Titanic Survival Rates by Sex")

	

	

	

	

	

	

	

	

	#

	

	

	# Third question - What was the survival rate by class of ticket?

	

	

	#

	

	

	ggplot(titanic, aes(x = Pclass, fill = Survived)) +

	

	

	 theme_bw() +

	

	

	 geom_bar() +

	

	

	 labs(y = "Passenger Count",

	

	

	 title = "Titanic Survival Rates by Pclass")

	

	

	

	

	

	

	

	

	#

	

	

	# Fourth question - What was the survival rate by class of ticket

	

	

	# and gender?

	

	

	#

	

	

	# We can leverage facets to further segment the data and enable

	

	

	# "visual drill-down" into the data.

	

	

	#

	

	

	ggplot(titanic, aes(x = Sex, fill = Survived)) +

	

	

	 theme_bw() +

	

	

	 facet_wrap(~ Pclass) +

	

	

	 geom_bar() +

	

	

	 labs(y = "Passenger Count",

	

	

	 title = "Titanic Survival Rates by Pclass and Sex")

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	#

	

	

	# Next, we'll move on to visualizing continuous (i.e., numeric)

	

	

	# data using ggplot2. We'll explore visualizations of single

	

	

	# numeric variables (i.e., columns) and also illustrate how

	

	

	# ggplot2 enables visual drill-down on numeric data.

	

	

	#

	

	

	

	

	

	

	

	

	#

	

	

	# Fifth Question - What is the distribution of passenger ages?

	

	

	#

	

	

	# The histogram is a staple of visualizing numeric data as it very

	

	

	# powerfully communicates the distrubtion of a variable (i.e., column).

	

	

	#

	

	

	ggplot(titanic, aes(x = Age)) +

	

	

	 theme_bw() +

	

	

	 geom_histogram(binwidth = 5) +

	

	

	 labs(y = "Passenger Count",

	

	

	 x = "Age (binwidth = 5)",

	

	

	 title = "Titanic Age Distribtion")

	

	

	

	

	

	

	

	

	#

	

	

	# Sixth Question - What are the survival rates by age?

	

	

	#

	

	

	ggplot(titanic, aes(x = Age, fill = Survived)) +

	

	

	 theme_bw() +

	

	

	 geom_histogram(binwidth = 5) +

	

	

	 labs(y = "Passenger Count",

	

	

	 x = "Age (binwidth = 5)",

	

	

	 title = "Titanic Survival Rates by Age")

	

	

	

	

	

	# Another great visualization for this question is the box-and-whisker

	

	

	# plot.

	

	

	ggplot(titanic, aes(x = Survived, y = Age)) +

	

	

	 theme_bw() +

	

	

	 geom_boxplot() +

	

	

	 labs(y = "Age",

	

	

	 x = "Survived",

	

	

	 title = "Titanic Survival Rates by Age")

	

	

	

	

	

	

	

	

	#

	

	

	# Seventh Question - What is the survival rates by age when segmented

	

	

	# by gender and class of ticket?

	

	

	#

	

	

	# A related visualization to the histogram is a density plot. Think of

	

	

	# a density plot as a smoothed version of the histogram. Using ggplot2

	

	

	# we can use facets to allow for visual drill-down via density plots.

	

	

	#

	

	

	ggplot(titanic, aes(x = Age, fill = Survived)) +

	

	

	 theme_bw() +

	

	

	 facet_wrap(Sex ~ Pclass) +

	

	

	 geom_density(alpha = 0.5) +

	

	

	 labs(y = "Age",

	

	

	 x = "Survived",

	

	

	 title = "Titanic Survival Rates by Age, Pclass and Sex")

	

	

	

	

	

	# If you prefer histograms, no problem!

	

	

	ggplot(titanic, aes(x = Age, fill = Survived)) +

	

	

	 theme_bw() +

	

	

	 facet_wrap(Sex ~ Pclass) +

	

	

	 geom_histogram(binwidth = 5) +

	

	

	 labs(y = "Age",

	

	

	 x = "Survived",

	

	

	 title = "Titanic Survival Rates by Age, Pclass and Sex")

	

	

	

Introduction to Data Visualization with R and ggplot2/IntroDataVizWithRAndGgplot2.pdf

0 → 100644

View file @ 22f44079

File added

Introduction to Data Visualization with R and ggplot2/README.md

0 → 100644

View file @ 22f44079

	

	

	# IntroDataVisualizationWithRAndGgplot2

	

	

	

	

	

	The public GitHub repository for Data Science Dojo's webinar titled "An Introduction to Data Visualization with R and ggplot2".

	

	

	

	

	

	These materials make use of the data from Kaggle's [Titanic: Machine Learning from Disaster](https://www.kaggle.com/c/titanic) competition.

	

	

	

	

	

	Additionally, the following are required to use the files for the Meetup:

	

	

	

	

	

	* [The R programming language](https://cran.rstudio.com/)

	

	

	* While not required, [RStudio](https://www.rstudio.com/products/rstudio/download/) is highly recommended.

	

	

	* The [ggplot2](https://cran.r-project.org/web/packages/ggplot2/index.html) package.

Introduction to Data Visualization with R and ggplot2/titanic.csv

0 → 100644

View file @ 22f44079

This diff is collapsed.
Click to expand it.

Introduction to Text Analytics with R @ b71d0c5c

	

	

	Subproject commit b71d0c5cc95860a0e51fbc3c4d9ffd4289c1e876

Introduction to Text Analytics with R/.Rhistory

0 → 100644

View file @ 22f44079

This diff is collapsed.
Click to expand it.

Introduction to Text Analytics with R/IntroToTextAnalyticsWithR_Part1.pdf

0 → 100644

View file @ 22f44079

File added

Introduction to Text Analytics with R/IntroToTextAnalyticsWithR_Part10.pdf

0 → 100644

View file @ 22f44079

File added

Introduction to Text Analytics with R/IntroToTextAnalyticsWithR_Part12.pdf

0 → 100644

View file @ 22f44079

File added

Introduction to Text Analytics with R/IntroToTextAnalyticsWithR_Part2.pdf

0 → 100644

View file @ 22f44079

File added

Introduction to Text Analytics with R/IntroToTextAnalyticsWithR_Part5.pdf

0 → 100644

View file @ 22f44079

File added

Introduction to Text Analytics with R/IntroToTextAnalyticsWithR_Part6.pdf

0 → 100644

View file @ 22f44079

File added

Introduction to Text Analytics with R/IntroToTextAnalyticsWithR_Part7.pdf

0 → 100644

View file @ 22f44079

File added

Introduction to Text Analytics with R/IntroToTextAnalyticsWithR_Part9.pdf

0 → 100644

View file @ 22f44079

File added

Introduction to Text Analytics with R/IntroToTextAnalytics_Part1.R

0 → 100644

View file @ 22f44079

	

	

	#

	

	

	# Copyright 2017 Data Science Dojo

	

	

	#

	

	

	# Licensed under the Apache License, Version 2.0 (the "License");

	

	

	# you may not use this file except in compliance with the License.

	

	

	# You may obtain a copy of the License at

	

	

	#

	

	

	# http://www.apache.org/licenses/LICENSE-2.0

	

	

	#

	

	

	# Unless required by applicable law or agreed to in writing, software

	

	

	# distributed under the License is distributed on an "AS IS" BASIS,

	

	

	# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

	

	

	# See the License for the specific language governing permissions and

	

	

	# limitations under the License.

	

	

	#

	

	

	

	

	

	

	

	

	#

	

	

	# This R source code file corresponds to video 1 of the Data Science

	

	

	# Dojo YouTube series "Introduction to Text Analytics with R" located

	

	

	# at the following URL:

	

	

	# <YouTube Video Link Here />

	

	

	#

	

	

	

	

	

	

	

	

	# Install all required packages.

	

	

	install.packages(c("ggplot2", "e1071", "caret", "quanteda",

	

	

	 "irlba", "randomForest"))

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	# Load up the .CSV data and explore in RStudio.

	

	

	spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")

	

	

	View(spam.raw)

	

	

	

	

	

	

	

	

	

	

	

	# Clean up the data frame and view our handiwork.

	

	

	spam.raw <- spam.raw[, 1:2]

	

	

	names(spam.raw) <- c("Label", "Text")

	

	

	View(spam.raw)

	

	

	

	

	

	

	

	

	

	

	

	# Check data to see if there are missing values.

	

	

	length(which(!complete.cases(spam.raw)))

	

	

	

	

	

	

	

	

	

	

	

	# Convert our class label into a factor.

	

	

	spam.raw$Label <- as.factor(spam.raw$Label)

	

	

	

	

	

	

	

	

	

	

	

	# The first step, as always, is to explore the data.

	

	

	# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).

	

	

	prop.table(table(spam.raw$Label))

	

	

	

	

	

	

	

	

	

	

	

	# Next up, let's get a feel for the distribution of text lengths of the SMS

	

	

	# messages by adding a new feature for the length of each message.

	

	

	spam.raw$TextLength <- nchar(spam.raw$Text)

	

	

	summary(spam.raw$TextLength)

	

	

	

	

	

	

	

	

	

	

	

	# Visualize distribution with ggplot2, adding segmentation for ham/spam.

	

	

	library(ggplot2)

	

	

	

	

	

	ggplot(spam.raw, aes(x = TextLength, fill = Label)) +

	

	

	 theme_bw() +

	

	

	 geom_histogram(binwidth = 5) +

	

	

	 labs(y = "Text Count", x = "Length of Text",

	

	

	 title = "Distribution of Text Lengths with Class Labels")

Introduction to Text Analytics with R/IntroToTextAnalytics_Part10.R

0 → 100644

View file @ 22f44079

This diff is collapsed.
Click to expand it.

Introduction to Text Analytics with R/IntroToTextAnalytics_Part11.R

0 → 100644

View file @ 22f44079

This diff is collapsed.
Click to expand it.

Introduction to Text Analytics with R/IntroToTextAnalytics_Part12.R

0 → 100644

View file @ 22f44079

This diff is collapsed.
Click to expand it.

Introduction to Text Analytics with R/IntroToTextAnalytics_Part2.R

0 → 100644

View file @ 22f44079

	

	

	#

	

	

	# Copyright 2017 Data Science Dojo

	

	

	#

	

	

	# Licensed under the Apache License, Version 2.0 (the "License");

	

	

	# you may not use this file except in compliance with the License.

	

	

	# You may obtain a copy of the License at

	

	

	#

	

	

	# http://www.apache.org/licenses/LICENSE-2.0

	

	

	#

	

	

	# Unless required by applicable law or agreed to in writing, software

	

	

	# distributed under the License is distributed on an "AS IS" BASIS,

	

	

	# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

	

	

	# See the License for the specific language governing permissions and

	

	

	# limitations under the License.

	

	

	#

	

	

	

	

	

	

	

	

	#

	

	

	# This R source code file corresponds to video 2 of the Data Science

	

	

	# Dojo YouTube series "Introduction to Text Analytics with R" located

	

	

	# at the following URL:

	

	

	# https://www.youtube.com/watch?v=Y7385dGRNLM

	

	

	#

	

	

	

	

	

	

	

	

	# Install all required packages.

	

	

	install.packages(c("ggplot2", "e1071", "caret", "quanteda",

	

	

	 "irlba", "randomForest"))

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	# Load up the .CSV data and explore in RStudio.

	

	

	spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")

	

	

	View(spam.raw)

	

	

	

	

	

	

	

	

	

	

	

	# Clean up the data frame and view our handiwork.

	

	

	spam.raw <- spam.raw[, 1:2]

	

	

	names(spam.raw) <- c("Label", "Text")

	

	

	View(spam.raw)

	

	

	

	

	

	

	

	

	

	

	

	# Check data to see if there are missing values.

	

	

	length(which(!complete.cases(spam.raw)))

	

	

	

	

	

	

	

	

	

	

	

	# Convert our class label into a factor.

	

	

	spam.raw$Label <- as.factor(spam.raw$Label)

	

	

	

	

	

	

	

	

	

	

	

	# The first step, as always, is to explore the data.

	

	

	# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).

	

	

	prop.table(table(spam.raw$Label))

	

	

	

	

	

	

	

	

	

	

	

	# Next up, let's get a feel for the distribution of text lengths of the SMS

	

	

	# messages by adding a new feature for the length of each message.

	

	

	spam.raw$TextLength <- nchar(spam.raw$Text)

	

	

	summary(spam.raw$TextLength)

	

	

	

	

	

	

	

	

	

	

	

	# Visualize distribution with ggplot2, adding segmentation for ham/spam.

	

	

	library(ggplot2)

	

	

	

	

	

	ggplot(spam.raw, aes(x = TextLength, fill = Label)) +

	

	

	 theme_bw() +

	

	

	 geom_histogram(binwidth = 5) +

	

	

	 labs(y = "Text Count", x = "Length of Text",

	

	

	 title = "Distribution of Text Lengths with Class Labels")

	

	

	

	

	

	

	

	

	

	

	

	# At a minimum we need to split our data into a training set and a

	

	

	# test set. In a true project we would want to use a three-way split

	

	

	# of training, validation, and test.

	

	

	#

	

	

	# As we know that our data has non-trivial class imbalance, we'll

	

	

	# use the mighty caret package to create a randomg train/test split

	

	

	# that ensures the correct ham/spam class label proportions (i.e.,

	

	

	# we'll use caret for a random stratified split).

	

	

	library(caret)

	

	

	help(package = "caret")

	

	

	

	

	

	

	

	

	# Use caret to create a 70%/30% stratified split. Set the random

	

	

	# seed for reproducibility.

	

	

	set.seed(32984)

	

	

	indexes <- createDataPartition(spam.raw$Label, times = 1,

	

	

	 p = 0.7, list = FALSE)

	

	

	

	

	

	train <- spam.raw[indexes,]

	

	

	test <- spam.raw[-indexes,]

	

	

	

	

	

	

	

	

	# Verify proportions.

	

	

	prop.table(table(train$Label))

	

	

	prop.table(table(test$Label))

	

	

	

Introduction to Text Analytics with R/IntroToTextAnalytics_Part3.R

0 → 100644

View file @ 22f44079

	

	

	#

	

	

	# Copyright 2017 Data Science Dojo

	

	

	#

	

	

	# Licensed under the Apache License, Version 2.0 (the "License");

	

	

	# you may not use this file except in compliance with the License.

	

	

	# You may obtain a copy of the License at

	

	

	#

	

	

	# http://www.apache.org/licenses/LICENSE-2.0

	

	

	#

	

	

	# Unless required by applicable law or agreed to in writing, software

	

	

	# distributed under the License is distributed on an "AS IS" BASIS,

	

	

	# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

	

	

	# See the License for the specific language governing permissions and

	

	

	# limitations under the License.

	

	

	#

	

	

	

	

	

	

	

	

	#

	

	

	# This R source code file corresponds to video 3 of the Data Science

	

	

	# Dojo YouTube series "Introduction to Text Analytics with R" located

	

	

	# at the following URL:

	

	

	# https://www.youtube.com/watch?v=CQsyVDxK7_g

	

	

	#

	

	

	

	

	

	

	

	

	# Install all required packages.

	

	

	install.packages(c("ggplot2", "e1071", "caret", "quanteda",

	

	

	 "irlba", "randomForest"))

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	# Load up the .CSV data and explore in RStudio.

	

	

	spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")

	

	

	View(spam.raw)

	

	

	

	

	

	

	

	

	

	

	

	# Clean up the data frame and view our handiwork.

	

	

	spam.raw <- spam.raw[, 1:2]

	

	

	names(spam.raw) <- c("Label", "Text")

	

	

	View(spam.raw)

	

	

	

	

	

	

	

	

	

	

	

	# Check data to see if there are missing values.

	

	

	length(which(!complete.cases(spam.raw)))

	

	

	

	

	

	

	

	

	

	

	

	# Convert our class label into a factor.

	

	

	spam.raw$Label <- as.factor(spam.raw$Label)

	

	

	

	

	

	

	

	

	

	

	

	# The first step, as always, is to explore the data.

	

	

	# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).

	

	

	prop.table(table(spam.raw$Label))

	

	

	

	

	

	

	

	

	

	

	

	# Next up, let's get a feel for the distribution of text lengths of the SMS

	

	

	# messages by adding a new feature for the length of each message.

	

	

	spam.raw$TextLength <- nchar(spam.raw$Text)

	

	

	summary(spam.raw$TextLength)

	

	

	

	

	

	

	

	

	

	

	

	# Visualize distribution with ggplot2, adding segmentation for ham/spam.

	

	

	library(ggplot2)

	

	

	

	

	

	ggplot(spam.raw, aes(x = TextLength, fill = Label)) +

	

	

	 theme_bw() +

	

	

	 geom_histogram(binwidth = 5) +

	

	

	 labs(y = "Text Count", x = "Length of Text",

	

	

	 title = "Distribution of Text Lengths with Class Labels")

	

	

	

	

	

	

	

	

	

	

	

	# At a minimum we need to split our data into a training set and a

	

	

	# test set. In a true project we would want to use a three-way split

	

	

	# of training, validation, and test.

	

	

	#

	

	

	# As we know that our data has non-trivial class imbalance, we'll

	

	

	# use the mighty caret package to create a randomg train/test split

	

	

	# that ensures the correct ham/spam class label proportions (i.e.,

	

	

	# we'll use caret for a random stratified split).

	

	

	library(caret)

	

	

	help(package = "caret")

	

	

	

	

	

	

	

	

	# Use caret to create a 70%/30% stratified split. Set the random

	

	

	# seed for reproducibility.

	

	

	set.seed(32984)

	

	

	indexes <- createDataPartition(spam.raw$Label, times = 1,

	

	

	 p = 0.7, list = FALSE)

	

	

	

	

	

	train <- spam.raw[indexes,]

	

	

	test <- spam.raw[-indexes,]

	

	

	

	

	

	

	

	

	# Verify proportions.

	

	

	prop.table(table(train$Label))

	

	

	prop.table(table(test$Label))

	

	

	

	

	

	

	

	

	

	

	

	# Text analytics requires a lot of data exploration, data pre-processing

	

	

	# and data wrangling. Let's explore some examples.

	

	

	

	

	

	# HTML-escaped ampersand character.

	

	

	train$Text[21]

	

	

	

	

	

	

	

	

	# HTML-escaped '<' and '>' characters. Also note that Mallika Sherawat

	

	

	# is an actual person, but we will ignore the implications of this for

	

	

	# this introductory tutorial.

	

	

	train$Text[38]

	

	

	

	

	

	

	

	

	# A URL.

	

	

	train$Text[357]

	

	

	

	

	

	

	

	

	

	

	

	# There are many packages in the R ecosystem for performing text

	

	

	# analytics. One of the newer packages in quanteda. The quanteda

	

	

	# package has many useful functions for quickly and easily working

	

	

	# with text data.

	

	

	library(quanteda)

	

	

	help(package = "quanteda")

	

	

	

	

	

	

	

	

	# Tokenize SMS text messages.

	

	

	train.tokens <- tokens(train$Text, what = "word",

	

	

	 remove_numbers = TRUE, remove_punct = TRUE,

	

	

	 remove_symbols = TRUE, remove_hyphens = TRUE)

	

	

	

	

	

	# Take a look at a specific SMS message and see how it transforms.

	

	

	train.tokens[[357]]

	

	

	

	

	

	

	

	

	# Lower case the tokens.

	

	

	train.tokens <- tokens_tolower(train.tokens)

	

	

	train.tokens[[357]]

	

	

	

	

	

	

	

	

	# Use quanteda's built-in stopword list for English.

	

	

	# NOTE - You should always inspect stopword lists for applicability to

	

	

	# your problem/domain.

	

	

	train.tokens <- tokens_select(train.tokens, stopwords(),

	

	

	 selection = "remove")

	

	

	train.tokens[[357]]

	

	

	

	

	

	

	

	

	# Perform stemming on the tokens.

	

	

	train.tokens <- tokens_wordstem(train.tokens, language = "english")

	

	

	train.tokens[[357]]

	

	

	

	

	

	

	

	

	# Create our first bag-of-words model.

	

	

	train.tokens.dfm <- dfm(train.tokens, tolower = FALSE)

	

	

	

	

	

	

	

	

	# Transform to a matrix and inspect.

	

	

	train.tokens.matrix <- as.matrix(train.tokens.dfm)

	

	

	View(train.tokens.matrix[1:20, 1:100])

	

	

	dim(train.tokens.matrix)

	

	

	

	

	

	

	

	

	# Investigate the effects of stemming.

	

	

	colnames(train.tokens.matrix)[1:50]

Introduction to Text Analytics with R/IntroToTextAnalytics_Part4.R

0 → 100644

View file @ 22f44079

	

	

	#

	

	

	# Copyright 2017 Data Science Dojo

	

	

	#

	

	

	# Licensed under the Apache License, Version 2.0 (the "License");

	

	

	# you may not use this file except in compliance with the License.

	

	

	# You may obtain a copy of the License at

	

	

	#

	

	

	# http://www.apache.org/licenses/LICENSE-2.0

	

	

	#

	

	

	# Unless required by applicable law or agreed to in writing, software

	

	

	# distributed under the License is distributed on an "AS IS" BASIS,

	

	

	# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

	

	

	# See the License for the specific language governing permissions and

	

	

	# limitations under the License.

	

	

	#

	

	

	

	

	

	

	

	

	#

	

	

	# This R source code file corresponds to video 4 of the Data Science

	

	

	# Dojo YouTube series "Introduction to Text Analytics with R" located

	

	

	# at the following URL:

	

	

	# https://www.youtube.com/watch?v=IFhDlHKRHno

	

	

	#

	

	

	

	

	

	

	

	

	# Install all required packages.

	

	

	install.packages(c("ggplot2", "e1071", "caret", "quanteda",

	

	

	 "irlba", "randomForest"))

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	# Load up the .CSV data and explore in RStudio.

	

	

	spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")

	

	

	View(spam.raw)

	

	

	

	

	

	

	

	

	

	

	

	# Clean up the data frame and view our handiwork.

	

	

	spam.raw <- spam.raw[, 1:2]

	

	

	names(spam.raw) <- c("Label", "Text")

	

	

	View(spam.raw)

	

	

	

	

	

	

	

	

	

	

	

	# Check data to see if there are missing values.

	

	

	length(which(!complete.cases(spam.raw)))

	

	

	

	

	

	

	

	

	

	

	

	# Convert our class label into a factor.

	

	

	spam.raw$Label <- as.factor(spam.raw$Label)

	

	

	

	

	

	

	

	

	

	

	

	# The first step, as always, is to explore the data.

	

	

	# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).

	

	

	prop.table(table(spam.raw$Label))

	

	

	

	

	

	

	

	

	

	

	

	# Next up, let's get a feel for the distribution of text lengths of the SMS

	

	

	# messages by adding a new feature for the length of each message.

	

	

	spam.raw$TextLength <- nchar(spam.raw$Text)

	

	

	summary(spam.raw$TextLength)

	

	

	

	

	

	

	

	

	

	

	

	# Visualize distribution with ggplot2, adding segmentation for ham/spam.

	

	

	library(ggplot2)

	

	

	

	

	

	ggplot(spam.raw, aes(x = TextLength, fill = Label)) +

	

	

	 theme_bw() +

	

	

	 geom_histogram(binwidth = 5) +

	

	

	 labs(y = "Text Count", x = "Length of Text",

	

	

	 title = "Distribution of Text Lengths with Class Labels")

	

	

	

	

	

	

	

	

	

	

	

	# At a minimum we need to split our data into a training set and a

	

	

	# test set. In a true project we would want to use a three-way split

	

	

	# of training, validation, and test.

	

	

	#

	

	

	# As we know that our data has non-trivial class imbalance, we'll

	

	

	# use the mighty caret package to create a randomg train/test split

	

	

	# that ensures the correct ham/spam class label proportions (i.e.,

	

	

	# we'll use caret for a random stratified split).

	

	

	library(caret)

	

	

	help(package = "caret")

	

	

	

	

	

	

	

	

	# Use caret to create a 70%/30% stratified split. Set the random

	

	

	# seed for reproducibility.

	

	

	set.seed(32984)

	

	

	indexes <- createDataPartition(spam.raw$Label, times = 1,

	

	

	 p = 0.7, list = FALSE)

	

	

	

	

	

	train <- spam.raw[indexes,]

	

	

	test <- spam.raw[-indexes,]

	

	

	

	

	

	

	

	

	# Verify proportions.

	

	

	prop.table(table(train$Label))

	

	

	prop.table(table(test$Label))

	

	

	

	

	

	

	

	

	

	

	

	# Text analytics requires a lot of data exploration, data pre-processing

	

	

	# and data wrangling. Let's explore some examples.

	

	

	

	

	

	# HTML-escaped ampersand character.

	

	

	train$Text[21]

	

	

	

	

	

	

	

	

	# HTML-escaped '<' and '>' characters. Also note that Mallika Sherawat

	

	

	# is an actual person, but we will ignore the implications of this for

	

	

	# this introductory tutorial.

	

	

	train$Text[38]

	

	

	

	

	

	

	

	

	# A URL.

	

	

	train$Text[357]

	

	

	

	

	

	

	

	

	

	

	

	# There are many packages in the R ecosystem for performing text

	

	

	# analytics. One of the newer packages in quanteda. The quanteda

	

	

	# package has many useful functions for quickly and easily working

	

	

	# with text data.

	

	

	library(quanteda)

	

	

	help(package = "quanteda")

	

	

	

	

	

	

	

	

	# Tokenize SMS text messages.

	

	

	train.tokens <- tokens(train$Text, what = "word",

	

	

	 remove_numbers = TRUE, remove_punct = TRUE,

	

	

	 remove_symbols = TRUE, remove_hyphens = TRUE)

	

	

	

	

	

	# Take a look at a specific SMS message and see how it transforms.

	

	

	train.tokens[[357]]

	

	

	

	

	

	

	

	

	# Lower case the tokens.

	

	

	train.tokens <- tokens_tolower(train.tokens)

	

	

	train.tokens[[357]]

	

	

	

	

	

	

	

	

	# Use quanteda's built-in stopword list for English.

	

	

	# NOTE - You should always inspect stopword lists for applicability to

	

	

	# your problem/domain.

	

	

	train.tokens <- tokens_select(train.tokens, stopwords(),

	

	

	 selection = "remove")

	

	

	train.tokens[[357]]

	

	

	

	

	

	

	

	

	# Perform stemming on the tokens.

	

	

	train.tokens <- tokens_wordstem(train.tokens, language = "english")

	

	

	train.tokens[[357]]

	

	

	

	

	

	

	

	

	# Create our first bag-of-words model.

	

	

	train.tokens.dfm <- dfm(train.tokens, tolower = FALSE)

	

	

	

	

	

	

	

	

	# Transform to a matrix and inspect.

	

	

	train.tokens.matrix <- as.matrix(train.tokens.dfm)

	

	

	View(train.tokens.matrix[1:20, 1:100])

	

	

	dim(train.tokens.matrix)

	

	

	

	

	

	

	

	

	# Investigate the effects of stemming.

	

	

	colnames(train.tokens.matrix)[1:50]

	

	

	

	

	

	

	

	

	# Per best practices, we will leverage cross validation (CV) as

	

	

	# the basis of our modeling process. Using CV we can create

	

	

	# estimates of how well our model will do in Production on new,

	

	

	# unseen data. CV is powerful, but the downside is that it

	

	

	# requires more processing and therefore more time.

	

	

	#

	

	

	# If you are not familiar with CV, consult the following

	

	

	# Wikipedia article:

	

	

	#

	

	

	# https://en.wikipedia.org/wiki/Cross-validation_(statistics)

	

	

	#

	

	

	

	

	

	# Setup a the feature data frame with labels.

	

	

	train.tokens.df <- cbind(Label = train$Label, data.frame(train.tokens.dfm))

	

	

	

	

	

	

	

	

	# Often, tokenization requires some additional pre-processing

	

	

	names(train.tokens.df)[c(146, 148, 235, 238)]

	

	

	

	

	

	

	

	

	# Cleanup column names.

	

	

	names(train.tokens.df) <- make.names(names(train.tokens.df))

	

	

	

	

	

	

	

	

	# Use caret to create stratified folds for 10-fold cross validation repeated

	

	

	# 3 times (i.e., create 30 random stratified samples)

	

	

	set.seed(48743)

	

	

	cv.folds <- createMultiFolds(train$Label, k = 10, times = 3)

	

	

	

	

	

	cv.cntrl <- trainControl(method = "repeatedcv", number = 10,

	

	

	 repeats = 3, index = cv.folds)

	

	

	

	

	

	

	

	

	# Our data frame is non-trivial in size. As such, CV runs will take

	

	

	# quite a long time to run. To cut down on total execution time, use

	

	

	# the doSNOW package to allow for multi-core training in parallel.

	

	

	#

	

	

	# WARNING - The following code is configured to run on a workstation-

	

	

	# or server-class machine (i.e., 12 logical cores). Alter

	

	

	# code to suit your HW environment.

	

	

	#

	

	

	#install.packages("doSNOW")

	

	

	library(doSNOW)

	

	

	

	

	

	

	

	

	# Time the code execution

	

	

	start.time <- Sys.time()

	

	

	

	

	

	

	

	

	# Create a cluster to work on 10 logical cores.

	

	

	cl <- makeCluster(10, type = "SOCK")

	

	

	registerDoSNOW(cl)

	

	

	

	

	

	

	

	

	# As our data is non-trivial in size at this point, use a single decision

	

	

	# tree alogrithm as our first model. We will graduate to using more

	

	

	# powerful algorithms later when we perform feature extraction to shrink

	

	

	# the size of our data.

	

	

	rpart.cv.1 <- train(Label ~ ., data = train.tokens.df, method = "rpart",

	

	

	 trControl = cv.cntrl, tuneLength = 7)

	

	

	

	

	

	

	

	

	# Processing is done, stop cluster.

	

	

	stopCluster(cl)

	

	

	

	

	

	

	

	

	# Total time of execution on workstation was approximately 4 minutes.

	

	

	total.time <- Sys.time() - start.time

	

	

	total.time

	

	

	

	

	

	

	

	

	# Check out our results.

	

	

	rpart.cv.1

Introduction to Text Analytics with R/IntroToTextAnalytics_Part5.R

0 → 100644

View file @ 22f44079

	

	

	#

	

	

	# Copyright 2017 Data Science Dojo

	

	

	#

	

	

	# Licensed under the Apache License, Version 2.0 (the "License");

	

	

	# you may not use this file except in compliance with the License.

	

	

	# You may obtain a copy of the License at

	

	

	#

	

	

	# http://www.apache.org/licenses/LICENSE-2.0

	

	

	#

	

	

	# Unless required by applicable law or agreed to in writing, software

	

	

	# distributed under the License is distributed on an "AS IS" BASIS,

	

	

	# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

	

	

	# See the License for the specific language governing permissions and

	

	

	# limitations under the License.

	

	

	#

	

	

	

	

	

	

	

	

	#

	

	

	# This R source code file corresponds to video 5 of the Data Science

	

	

	# Dojo YouTube series "Introduction to Text Analytics with R" located

	

	

	# at the following URL:

	

	

	# https://www.youtube.com/watch?v=az7yf0IfWPM

	

	

	#

	

	

	

	

	

	

	

	

	# Install all required packages.

	

	

	install.packages(c("ggplot2", "e1071", "caret", "quanteda",

	

	

	 "irlba", "randomForest"))

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	# Load up the .CSV data and explore in RStudio.

	

	

	spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")

	

	

	View(spam.raw)

	

	

	

	

	

	

	

	

	

	

	

	# Clean up the data frame and view our handiwork.

	

	

	spam.raw <- spam.raw[, 1:2]

	

	

	names(spam.raw) <- c("Label", "Text")

	

	

	View(spam.raw)

	

	

	

	

	

	

	

	

	

	

	

	# Check data to see if there are missing values.

	

	

	length(which(!complete.cases(spam.raw)))

	

	

	

	

	

	

	

	

	

	

	

	# Convert our class label into a factor.

	

	

	spam.raw$Label <- as.factor(spam.raw$Label)

	

	

	

	

	

	

	

	

	

	

	

	# The first step, as always, is to explore the data.

	

	

	# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).

	

	

	prop.table(table(spam.raw$Label))

	

	

	

	

	

	

	

	

	

	

	

	# Next up, let's get a feel for the distribution of text lengths of the SMS

	

	

	# messages by adding a new feature for the length of each message.

	

	

	spam.raw$TextLength <- nchar(spam.raw$Text)

	

	

	summary(spam.raw$TextLength)

	

	

	

	

	

	

	

	

	

	

	

	# Visualize distribution with ggplot2, adding segmentation for ham/spam.

	

	

	library(ggplot2)

	

	

	

	

	

	ggplot(spam.raw, aes(x = TextLength, fill = Label)) +

	

	

	 theme_bw() +

	

	

	 geom_histogram(binwidth = 5) +

	

	

	 labs(y = "Text Count", x = "Length of Text",

	

	

	 title = "Distribution of Text Lengths with Class Labels")

	

	

	

	

	

	

	

	

	

	

	

	# At a minimum we need to split our data into a training set and a

	

	

	# test set. In a true project we would want to use a three-way split

	

	

	# of training, validation, and test.

	

	

	#

	

	

	# As we know that our data has non-trivial class imbalance, we'll

	

	

	# use the mighty caret package to create a randomg train/test split

	

	

	# that ensures the correct ham/spam class label proportions (i.e.,

	

	

	# we'll use caret for a random stratified split).

	

	

	library(caret)

	

	

	help(package = "caret")

	

	

	

	

	

	

	

	

	# Use caret to create a 70%/30% stratified split. Set the random

	

	

	# seed for reproducibility.

	

	

	set.seed(32984)

	

	

	indexes <- createDataPartition(spam.raw$Label, times = 1,

	

	

	 p = 0.7, list = FALSE)

	

	

	

	

	

	train <- spam.raw[indexes,]

	

	

	test <- spam.raw[-indexes,]

	

	

	

	

	

	

	

	

	# Verify proportions.

	

	

	prop.table(table(train$Label))

	

	

	prop.table(table(test$Label))

	

	

	

	

	

	

	

	

	

	

	

	# Text analytics requires a lot of data exploration, data pre-processing

	

	

	# and data wrangling. Let's explore some examples.

	

	

	

	

	

	# HTML-escaped ampersand character.

	

	

	train$Text[21]

	

	

	

	

	

	

	

	

	# HTML-escaped '<' and '>' characters. Also note that Mallika Sherawat

	

	

	# is an actual person, but we will ignore the implications of this for

	

	

	# this introductory tutorial.

	

	

	train$Text[38]

	

	

	

	

	

	

	

	

	# A URL.

	

	

	train$Text[357]

	

	

	

	

	

	

	

	

	

	

	

	# There are many packages in the R ecosystem for performing text

	

	

	# analytics. One of the newer packages in quanteda. The quanteda

	

	

	# package has many useful functions for quickly and easily working

	

	

	# with text data.

	

	

	library(quanteda)

	

	

	help(package = "quanteda")

	

	

	

	

	

	

	

	

	# Tokenize SMS text messages.

	

	

	train.tokens <- tokens(train$Text, what = "word",

	

	

	 remove_numbers = TRUE, remove_punct = TRUE,

	

	

	 remove_symbols = TRUE, remove_hyphens = TRUE)

	

	

	

	

	

	# Take a look at a specific SMS message and see how it transforms.

	

	

	train.tokens[[357]]

	

	

	

	

	

	

	

	

	# Lower case the tokens.

	

	

	train.tokens <- tokens_tolower(train.tokens)

	

	

	train.tokens[[357]]

	

	

	

	

	

	

	

	

	# Use quanteda's built-in stopword list for English.

	

	

	# NOTE - You should always inspect stopword lists for applicability to

	

	

	# your problem/domain.

	

	

	train.tokens <- tokens_select(train.tokens, stopwords(),

	

	

	 selection = "remove")

	

	

	train.tokens[[357]]

	

	

	

	

	

	

	

	

	# Perform stemming on the tokens.

	

	

	train.tokens <- tokens_wordstem(train.tokens, language = "english")

	

	

	train.tokens[[357]]

	

	

	

	

	

	

	

	

	# Create our first bag-of-words model.

	

	

	train.tokens.dfm <- dfm(train.tokens, tolower = FALSE)

	

	

	

	

	

	

	

	

	# Transform to a matrix and inspect.

	

	

	train.tokens.matrix <- as.matrix(train.tokens.dfm)

	

	

	View(train.tokens.matrix[1:20, 1:100])

	

	

	dim(train.tokens.matrix)

	

	

	

	

	

	

	

	

	# Investigate the effects of stemming.

	

	

	colnames(train.tokens.matrix)[1:50]

	

	

	

	

	

	

	

	

	# Per best practices, we will leverage cross validation (CV) as

	

	

	# the basis of our modeling process. Using CV we can create

	

	

	# estimates of how well our model will do in Production on new,

	

	

	# unseen data. CV is powerful, but the downside is that it

	

	

	# requires more processing and therefore more time.

	

	

	#

	

	

	# If you are not familiar with CV, consult the following

	

	

	# Wikipedia article:

	

	

	#

	

	

	# https://en.wikipedia.org/wiki/Cross-validation_(statistics)

	

	

	#

	

	

	

	

	

	# Setup a the feature data frame with labels.

	

	

	train.tokens.df <- cbind(Label = train$Label, data.frame(train.tokens.dfm))

	

	

	

	

	

	

	

	

	# Often, tokenization requires some additional pre-processing

	

	

	names(train.tokens.df)[c(146, 148, 235, 238)]

	

	

	

	

	

	

	

	

	# Cleanup column names.

	

	

	names(train.tokens.df) <- make.names(names(train.tokens.df))

	

	

	

	

	

	

	

	

	# Use caret to create stratified folds for 10-fold cross validation repeated

	

	

	# 3 times (i.e., create 30 random stratified samples)

	

	

	set.seed(48743)

	

	

	cv.folds <- createMultiFolds(train$Label, k = 10, times = 3)

	

	

	

	

	

	cv.cntrl <- trainControl(method = "repeatedcv", number = 10,

	

	

	 repeats = 3, index = cv.folds)

	

	

	

	

	

	

	

	

	# Our data frame is non-trivial in size. As such, CV runs will take

	

	

	# quite a long time to run. To cut down on total execution time, use

	

	

	# the doSNOW package to allow for multi-core training in parallel.

	

	

	#

	

	

	# WARNING - The following code is configured to run on a workstation-

	

	

	# or server-class machine (i.e., 12 logical cores). Alter

	

	

	# code to suit your HW environment.

	

	

	#

	

	

	#install.packages("doSNOW")

	

	

	library(doSNOW)

	

	

	

	

	

	

	

	

	# Time the code execution

	

	

	start.time <- Sys.time()

	

	

	

	

	

	

	

	

	# Create a cluster to work on 10 logical cores.

	

	

	cl <- makeCluster(10, type = "SOCK")

	

	

	registerDoSNOW(cl)

	

	

	

	

	

	

	

	

	# As our data is non-trivial in size at this point, use a single decision

	

	

	# tree alogrithm as our first model. We will graduate to using more

	

	

	# powerful algorithms later when we perform feature extraction to shrink

	

	

	# the size of our data.

	

	

	rpart.cv.1 <- train(Label ~ ., data = train.tokens.df, method = "rpart",

	

	

	 trControl = cv.cntrl, tuneLength = 7)

	

	

	

	

	

	

	

	

	# Processing is done, stop cluster.

	

	

	stopCluster(cl)

	

	

	

	

	

	

	

	

	# Total time of execution on workstation was approximately 4 minutes.

	

	

	total.time <- Sys.time() - start.time

	

	

	total.time

	

	

	

	

	

	

	

	

	# Check out our results.

	

	

	rpart.cv.1

	

	

	

	

	

	

	

	

	

	

	

	# The use of Term Frequency-Inverse Document Frequency (TF-IDF) is a

	

	

	# powerful technique for enhancing the information/signal contained

	

	

	# within our document-frequency matrix. Specifically, the mathematics

	

	

	# behind TF-IDF accomplish the following goals:

	

	

	# 1 - The TF calculation accounts for the fact that longer

	

	

	# documents will have higher individual term counts. Applying

	

	

	# TF normalizes all documents in the corpus to be length

	

	

	# independent.

	

	

	# 2 - The IDF calculation accounts for the frequency of term

	

	

	# appearance in all documents in the corpus. The intuition

	

	

	# being that a term that appears in every document has no

	

	

	# predictive power.

	

	

	# 3 - The multiplication of TF by IDF for each cell in the matrix

	

	

	# allows for weighting of #1 and #2 for each cell in the matrix.

	

	

	

	

	

	

	

	

	# Our function for calculating relative term frequency (TF)

	

	

	term.frequency <- function(row) {

	

	

	 row / sum(row)

	

	

	}

	

	

	

	

	

	# Our function for calculating inverse document frequency (IDF)

	

	

	inverse.doc.freq <- function(col) {

	

	

	 corpus.size <- length(col)

	

	

	 doc.count <- length(which(col > 0))

	

	

	

	

	

	 log10(corpus.size / doc.count)

	

	

	}

	

	

	

	

	

	# Our function for calculating TF-IDF.

	

	

	tf.idf <- function(x, idf) {

	

	

	 x * idf

	

	

	}

	

	

	

	

	

	

	

	

	# First step, normalize all documents via TF.

	

	

	train.tokens.df <- apply(train.tokens.matrix, 1, term.frequency)

	

	

	dim(train.tokens.df)

	

	

	View(train.tokens.df[1:20, 1:100])

	

	

	

	

	

	

	

	

	# Second step, calculate the IDF vector that we will use - both

	

	

	# for training data and for test data!

	

	

	train.tokens.idf <- apply(train.tokens.matrix, 2, inverse.doc.freq)

	

	

	str(train.tokens.idf)

	

	

	

	

	

	

	

	

	# Lastly, calculate TF-IDF for our training corpus.

	

	

	train.tokens.tfidf <- apply(train.tokens.df, 2, tf.idf, idf = train.tokens.idf)

	

	

	dim(train.tokens.tfidf)

	

	

	View(train.tokens.tfidf[1:25, 1:25])

	

	

	

	

	

	

	

	

	# Transpose the matrix

	

	

	train.tokens.tfidf <- t(train.tokens.tfidf)

	

	

	dim(train.tokens.tfidf)

	

	

	View(train.tokens.tfidf[1:25, 1:25])

	

	

	

	

	

	

	

	

	# Check for incopmlete cases.

	

	

	incomplete.cases <- which(!complete.cases(train.tokens.tfidf))

	

	

	train$Text[incomplete.cases]

	

	

	

	

	

	

	

	

	# Fix incomplete cases

	

	

	train.tokens.tfidf[incomplete.cases,] <- rep(0.0, ncol(train.tokens.tfidf))

	

	

	dim(train.tokens.tfidf)

	

	

	sum(which(!complete.cases(train.tokens.tfidf)))

	

	

	

	

	

	

	

	

	# Make a clean data frame using the same process as before.

	

	

	train.tokens.tfidf.df <- cbind(Label = train$Label, data.frame(train.tokens.tfidf))

	

	

	names(train.tokens.tfidf.df) <- make.names(names(train.tokens.tfidf.df))

	

	

	

Introduction to Text Analytics with R/IntroToTextAnalytics_Part6.R

0 → 100644

View file @ 22f44079

This diff is collapsed.
Click to expand it.

Introduction to Text Analytics with R/IntroToTextAnalytics_Part7.R

0 → 100644

View file @ 22f44079

This diff is collapsed.
Click to expand it.

Introduction to Text Analytics with R/IntroToTextAnalytics_Part8.R

0 → 100644

View file @ 22f44079

This diff is collapsed.
Click to expand it.

Introduction to Text Analytics with R/IntroToTextAnalytics_Part9.R

0 → 100644

View file @ 22f44079

This diff is collapsed.
Click to expand it.

Introduction to Text Analytics with R/README.md

0 → 100644

View file @ 22f44079

	

	

	# IntroToTextAnalyticsWithR

	

	

	Public repo for the Data Science Dojo YouTube tutorial series [Introduction to Text Analytics with R](https://www.youtube.com/playlist?list=PL8eNk_zTBST8olxIRFoo0YeXxEOkYdoxi). This tutorial series leverages the [Kaggle SMS Spam Collection Dataset](https://www.kaggle.com/uciml/sms-spam-collection-dataset) originally published by [UCI ML Repository](https://archive.ics.uci.edu/ml/datasets/sms+spam+collection)

	

	

	

	

	

	

	

	

	- [Introduction to Text Analytics with R - Part 1](https://www.youtube.com/watch?v=4vuw0AsHeGw)

	

	

	- [Introduction to Text Analytics with R - Part 2](https://www.youtube.com/watch?v=Y7385dGRNLM)

	

	

	- [Introduction to Text Analytics with R - Part 3](https://www.youtube.com/watch?v=CQsyVDxK7_g)

	

	

	- [Introduction to Text Analytics with R - Part 4](https://www.youtube.com/watch?v=IFhDlHKRHno)

	

	

	- [Introduction to Text Analytics with R - Part 5](https://www.youtube.com/watch?v=az7yf0IfWPM)

	

	

	- [Introduction to Text Analytics with R - Part 6](https://www.youtube.com/watch?v=neiW5Ugsob8)

	

	

	- [Introduction to Text Analytics with R - Part 7](https://www.youtube.com/watch?v=Fza5szojsU8)

	

	

	- [Introduction to Text Analytics with R - Part 8](https://www.youtube.com/watch?v=4DI68P4hicQ)

	

	

	- [Introduction to Text Analytics with R - Part 9](https://www.youtube.com/watch?v=SgrLE6WQzkE)

	

	

	- [Introduction to Text Analytics with R - Part 10](https://www.youtube.com/watch?v=7cwBhWYHgsA)

	

	

	- [Introduction to Text Analytics with R - Part 11](https://www.youtube.com/watch?v=XWUi7RivDJY)

	

	

	- [Introduction to Text Analytics with R - Part 12](https://www.youtube.com/watch?v=-wCrClheObk)
			\ No newline at end of file

Introduction to Text Analytics with R/rf.cv.1.RData

0 → 100644

View file @ 22f44079

File added

Introduction to Text Analytics with R/rf.cv.2.RData

0 → 100644

View file @ 22f44079

File added

Introduction to Text Analytics with R/rf.cv.3.RData

0 → 100644

View file @ 22f44079

File added

Introduction to Text Analytics with R/rf.cv.4.RData

0 → 100644

View file @ 22f44079

File added

Introduction to Text Analytics with R/spam.csv

0 → 100644

View file @ 22f44079

File added

	

Write

	

Preview

	

Markdown
is
supported

0%

Try again
or
attach a new file

Attach a file

Cancel

You are about to add

0
people

to the discussion. Proceed with caution.

Finish editing this message first!

Cancel

Please
register
or
sign in
to comment

Explore
Help
Data Science Dojo

